// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or https://www.opensource.org/licenses/mit-license.php . #include "miner.h" #ifdef ENABLE_MINING #include "pow/tromp/equi_miner.h" #endif #include "amount.h" #include "chainparams.h" #include "consensus/consensus.h" #include "consensus/upgrades.h" #include "consensus/validation.h" #ifdef ENABLE_MINING #include "crypto/equihash.h" #endif #include "hash.h" #include "key_io.h" #include "main.h" #include "metrics.h" #include "net.h" #include "policy/policy.h" #include "pow.h" #include "primitives/transaction.h" #include "random.h" #include "timedata.h" #include "transaction_builder.h" #include "ui_interface.h" #include "util.h" #include "utilmoneystr.h" #include "validationinterface.h" #include #include "sodium.h" #include #include #ifdef ENABLE_MINING #include #endif #include using namespace std; ////////////////////////////////////////////////////////////////////////////// // // BitcoinMiner // // // Unconfirmed transactions in the memory pool often depend on other // transactions in the memory pool. When we select transactions from the // pool, we select by highest priority or fee rate, so we might consider // transactions that depend on transactions that aren't yet in the block. // The COrphan class keeps track of these 'temporary orphans' while // CreateBlock is figuring out which transactions to include. // class COrphan { public: const CTransaction* ptx; set setDependsOn; CFeeRate feeRate; double dPriority; COrphan(const CTransaction* ptxIn) : ptx(ptxIn), feeRate(0), dPriority(0) { } }; uint64_t nLastBlockTx = 0; uint64_t nLastBlockSize = 0; // We want to sort transactions by priority and fee rate, so: typedef boost::tuple TxPriority; class TxPriorityCompare { bool byFee; public: TxPriorityCompare(bool _byFee) : byFee(_byFee) { } bool operator()(const TxPriority& a, const TxPriority& b) { if (byFee) { if (a.get<1>() == b.get<1>()) return a.get<0>() < b.get<0>(); return a.get<1>() < b.get<1>(); } else { if (a.get<0>() == b.get<0>()) return a.get<1>() < b.get<1>(); return a.get<0>() < b.get<0>(); } } }; void UpdateTime(CBlockHeader* pblock, const Consensus::Params& consensusParams, const CBlockIndex* pindexPrev) { auto medianTimePast = pindexPrev->GetMedianTimePast(); auto nTime = std::max(medianTimePast + 1, GetTime()); // See the comment in ContextualCheckBlockHeader() for background. if (consensusParams.FutureTimestampSoftForkActive(pindexPrev->nHeight + 1)) { nTime = std::min(nTime, medianTimePast + MAX_FUTURE_BLOCK_TIME_MTP); } pblock->nTime = nTime; // Updating time can change work required on testnet: if (consensusParams.nPowAllowMinDifficultyBlocksAfterHeight != boost::none) { pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, consensusParams); } } bool IsValidMinerAddress(const MinerAddress& minerAddr) { return minerAddr.which() != 0; } class AddOutputsToCoinbaseTxAndSign : public boost::static_visitor<> { private: CMutableTransaction &mtx; const CChainParams &chainparams; const int nHeight; const CAmount nFees; public: AddOutputsToCoinbaseTxAndSign( CMutableTransaction &mtx, const CChainParams &chainparams, const int nHeight, const CAmount nFees) : mtx(mtx), chainparams(chainparams), nHeight(nHeight), nFees(nFees) {} CAmount SetFoundersRewardAndGetMinerValue() const { auto value = GetBlockSubsidy(nHeight, chainparams.GetConsensus()); if ((nHeight > 0) && (nHeight <= chainparams.GetConsensus().GetLastFoundersRewardBlockHeight(nHeight))) { // Founders reward is 20% of the block subsidy auto vFoundersReward = value / 5; // Take some reward away from us value -= vFoundersReward; // And give it to the founders mtx.vout.push_back(CTxOut(vFoundersReward, chainparams.GetFoundersRewardScriptAtHeight(nHeight))); } return value + nFees; } void operator()(const InvalidMinerAddress &invalid) const {} // Create shielded output void operator()(const libzcash::SaplingPaymentAddress &pa) const { auto value = SetFoundersRewardAndGetMinerValue(); mtx.valueBalance = -value; uint256 ovk; auto note = libzcash::SaplingNote(pa, value); auto output = OutputDescriptionInfo(ovk, note, {{0xF6}}); auto ctx = librustzcash_sapling_proving_ctx_init(); auto odesc = output.Build(ctx); if (!odesc) { librustzcash_sapling_proving_ctx_free(ctx); throw new std::runtime_error("Failed to create shielded output for miner"); } mtx.vShieldedOutput.push_back(odesc.get()); // Empty output script. uint256 dataToBeSigned; CScript scriptCode; try { dataToBeSigned = SignatureHash( scriptCode, mtx, NOT_AN_INPUT, SIGHASH_ALL, 0, CurrentEpochBranchId(nHeight, chainparams.GetConsensus())); } catch (std::logic_error ex) { librustzcash_sapling_proving_ctx_free(ctx); throw ex; } librustzcash_sapling_binding_sig( ctx, mtx.valueBalance, dataToBeSigned.begin(), mtx.bindingSig.data()); librustzcash_sapling_proving_ctx_free(ctx); } // Create transparent output void operator()(const boost::shared_ptr &coinbaseScript) const { // Create the miner's output. mtx.vout.resize(1); // Add the FR output and fetch the miner's output value. auto value = SetFoundersRewardAndGetMinerValue(); // Now fill in the miner's output. mtx.vout[0].nValue = value; mtx.vout[0].scriptPubKey = coinbaseScript->reserveScript; } }; CBlockTemplate* CreateNewBlock(const CChainParams& chainparams, const MinerAddress& minerAddress) { // Create new block std::unique_ptr pblocktemplate(new CBlockTemplate()); if(!pblocktemplate.get()) return NULL; CBlock *pblock = &pblocktemplate->block; // pointer for convenience // -regtest only: allow overriding block.nVersion with // -blockversion=N to test forking scenarios if (chainparams.MineBlocksOnDemand()) pblock->nVersion = GetArg("-blockversion", pblock->nVersion); // Add dummy coinbase tx as first transaction pblock->vtx.push_back(CTransaction()); pblocktemplate->vTxFees.push_back(-1); // updated at end pblocktemplate->vTxSigOps.push_back(-1); // updated at end // Largest block you're willing to create: unsigned int nBlockMaxSize = GetArg("-blockmaxsize", DEFAULT_BLOCK_MAX_SIZE); // Limit to betweeen 1K and MAX_BLOCK_SIZE-1K for sanity: nBlockMaxSize = std::max((unsigned int)1000, std::min((unsigned int)(MAX_BLOCK_SIZE-1000), nBlockMaxSize)); // How much of the block should be dedicated to high-priority transactions, // included regardless of the fees they pay unsigned int nBlockPrioritySize = GetArg("-blockprioritysize", DEFAULT_BLOCK_PRIORITY_SIZE); nBlockPrioritySize = std::min(nBlockMaxSize, nBlockPrioritySize); // Minimum block size you want to create; block will be filled with free transactions // until there are no more or the block reaches this size: unsigned int nBlockMinSize = GetArg("-blockminsize", DEFAULT_BLOCK_MIN_SIZE); nBlockMinSize = std::min(nBlockMaxSize, nBlockMinSize); // Collect memory pool transactions into the block CAmount nFees = 0; { LOCK2(cs_main, mempool.cs); CBlockIndex* pindexPrev = chainActive.Tip(); const int nHeight = pindexPrev->nHeight + 1; uint32_t consensusBranchId = CurrentEpochBranchId(nHeight, chainparams.GetConsensus()); pblock->nTime = GetTime(); const int64_t nMedianTimePast = pindexPrev->GetMedianTimePast(); CCoinsViewCache view(pcoinsTip); SaplingMerkleTree sapling_tree; assert(view.GetSaplingAnchorAt(view.GetBestAnchor(SAPLING), sapling_tree)); // Priority order to process transactions list vOrphan; // list memory doesn't move map > mapDependers; bool fPrintPriority = GetBoolArg("-printpriority", DEFAULT_PRINTPRIORITY); // This vector will be sorted into a priority queue: vector vecPriority; vecPriority.reserve(mempool.mapTx.size()); for (CTxMemPool::indexed_transaction_set::iterator mi = mempool.mapTx.begin(); mi != mempool.mapTx.end(); ++mi) { const CTransaction& tx = mi->GetTx(); int64_t nLockTimeCutoff = (STANDARD_LOCKTIME_VERIFY_FLAGS & LOCKTIME_MEDIAN_TIME_PAST) ? nMedianTimePast : pblock->GetBlockTime(); if (tx.IsCoinBase() || !IsFinalTx(tx, nHeight, nLockTimeCutoff) || IsExpiredTx(tx, nHeight)) continue; COrphan* porphan = NULL; double dPriority = 0; CAmount nTotalIn = 0; bool fMissingInputs = false; BOOST_FOREACH(const CTxIn& txin, tx.vin) { // Read prev transaction if (!view.HaveCoins(txin.prevout.hash)) { // This should never happen; all transactions in the memory // pool should connect to either transactions in the chain // or other transactions in the memory pool. if (!mempool.mapTx.count(txin.prevout.hash)) { LogPrintf("ERROR: mempool transaction missing input\n"); if (fDebug) assert("mempool transaction missing input" == 0); fMissingInputs = true; if (porphan) vOrphan.pop_back(); break; } // Has to wait for dependencies if (!porphan) { // Use list for automatic deletion vOrphan.push_back(COrphan(&tx)); porphan = &vOrphan.back(); } mapDependers[txin.prevout.hash].push_back(porphan); porphan->setDependsOn.insert(txin.prevout.hash); nTotalIn += mempool.mapTx.find(txin.prevout.hash)->GetTx().vout[txin.prevout.n].nValue; continue; } const CCoins* coins = view.AccessCoins(txin.prevout.hash); assert(coins); CAmount nValueIn = coins->vout[txin.prevout.n].nValue; nTotalIn += nValueIn; int nConf = nHeight - coins->nHeight; dPriority += (double)nValueIn * nConf; } nTotalIn += tx.GetShieldedValueIn(); if (fMissingInputs) continue; // Priority is sum(valuein * age) / modified_txsize unsigned int nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION); dPriority = tx.ComputePriority(dPriority, nTxSize); uint256 hash = tx.GetHash(); mempool.ApplyDeltas(hash, dPriority, nTotalIn); CFeeRate feeRate(nTotalIn-tx.GetValueOut(), nTxSize); if (porphan) { porphan->dPriority = dPriority; porphan->feeRate = feeRate; } else vecPriority.push_back(TxPriority(dPriority, feeRate, &(mi->GetTx()))); } // Collect transactions into block uint64_t nBlockSize = 1000; uint64_t nBlockTx = 0; int nBlockSigOps = 100; bool fSortedByFee = (nBlockPrioritySize <= 0); TxPriorityCompare comparer(fSortedByFee); std::make_heap(vecPriority.begin(), vecPriority.end(), comparer); // We want to track the value pool, but if the miner gets // invoked on an old block before the hardcoded fallback // is active we don't want to trip up any assertions. So, // we only adhere to the turnstile (as a miner) if we // actually have all of the information necessary to do // so. CAmount sproutValue = 0; CAmount saplingValue = 0; bool monitoring_pool_balances = true; if (chainparams.ZIP209Enabled()) { if (pindexPrev->nChainSproutValue) { sproutValue = *pindexPrev->nChainSproutValue; } else { monitoring_pool_balances = false; } if (pindexPrev->nChainSaplingValue) { saplingValue = *pindexPrev->nChainSaplingValue; } else { monitoring_pool_balances = false; } } while (!vecPriority.empty()) { // Take highest priority transaction off the priority queue: double dPriority = vecPriority.front().get<0>(); CFeeRate feeRate = vecPriority.front().get<1>(); const CTransaction& tx = *(vecPriority.front().get<2>()); std::pop_heap(vecPriority.begin(), vecPriority.end(), comparer); vecPriority.pop_back(); // Size limits unsigned int nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION); if (nBlockSize + nTxSize >= nBlockMaxSize) continue; // Legacy limits on sigOps: unsigned int nTxSigOps = GetLegacySigOpCount(tx); if (nBlockSigOps + nTxSigOps >= MAX_BLOCK_SIGOPS) continue; // Skip free transactions if we're past the minimum block size: const uint256& hash = tx.GetHash(); double dPriorityDelta = 0; CAmount nFeeDelta = 0; mempool.ApplyDeltas(hash, dPriorityDelta, nFeeDelta); if (fSortedByFee && (dPriorityDelta <= 0) && (nFeeDelta <= 0) && (feeRate < ::minRelayTxFee) && (nBlockSize + nTxSize >= nBlockMinSize)) continue; // Prioritise by fee once past the priority size or we run out of high-priority // transactions: if (!fSortedByFee && ((nBlockSize + nTxSize >= nBlockPrioritySize) || !AllowFree(dPriority))) { fSortedByFee = true; comparer = TxPriorityCompare(fSortedByFee); std::make_heap(vecPriority.begin(), vecPriority.end(), comparer); } if (!view.HaveInputs(tx)) continue; CAmount nTxFees = view.GetValueIn(tx)-tx.GetValueOut(); nTxSigOps += GetP2SHSigOpCount(tx, view); if (nBlockSigOps + nTxSigOps >= MAX_BLOCK_SIGOPS) continue; // Note that flags: we don't want to set mempool/IsStandard() // policy here, but we still have to ensure that the block we // create only contains transactions that are valid in new blocks. CValidationState state; PrecomputedTransactionData txdata(tx); if (!ContextualCheckInputs(tx, state, view, true, MANDATORY_SCRIPT_VERIFY_FLAGS, true, txdata, chainparams.GetConsensus(), consensusBranchId)) continue; if (chainparams.ZIP209Enabled() && monitoring_pool_balances) { // Does this transaction lead to a turnstile violation? CAmount sproutValueDummy = sproutValue; CAmount saplingValueDummy = saplingValue; saplingValueDummy += -tx.valueBalance; for (auto js : tx.vJoinSplit) { sproutValueDummy += js.vpub_old; sproutValueDummy -= js.vpub_new; } if (sproutValueDummy < 0) { LogPrintf("CreateNewBlock(): tx %s appears to violate Sprout turnstile\n", tx.GetHash().ToString()); continue; } if (saplingValueDummy < 0) { LogPrintf("CreateNewBlock(): tx %s appears to violate Sapling turnstile\n", tx.GetHash().ToString()); continue; } sproutValue = sproutValueDummy; saplingValue = saplingValueDummy; } UpdateCoins(tx, view, nHeight); // Added pblock->vtx.push_back(tx); pblocktemplate->vTxFees.push_back(nTxFees); pblocktemplate->vTxSigOps.push_back(nTxSigOps); nBlockSize += nTxSize; ++nBlockTx; nBlockSigOps += nTxSigOps; nFees += nTxFees; if (fPrintPriority) { LogPrintf("priority %.1f fee %s txid %s\n", dPriority, feeRate.ToString(), tx.GetHash().ToString()); } // Add transactions that depend on this one to the priority queue if (mapDependers.count(hash)) { BOOST_FOREACH(COrphan* porphan, mapDependers[hash]) { if (!porphan->setDependsOn.empty()) { porphan->setDependsOn.erase(hash); if (porphan->setDependsOn.empty()) { vecPriority.push_back(TxPriority(porphan->dPriority, porphan->feeRate, porphan->ptx)); std::push_heap(vecPriority.begin(), vecPriority.end(), comparer); } } } } } nLastBlockTx = nBlockTx; nLastBlockSize = nBlockSize; LogPrintf("CreateNewBlock(): total size %u\n", nBlockSize); // Create coinbase tx CMutableTransaction txNew = CreateNewContextualCMutableTransaction(chainparams.GetConsensus(), nHeight); txNew.vin.resize(1); txNew.vin[0].prevout.SetNull(); // Set to 0 so expiry height does not apply to coinbase txs txNew.nExpiryHeight = 0; // Add outputs and sign boost::apply_visitor( AddOutputsToCoinbaseTxAndSign(txNew, chainparams, nHeight, nFees), minerAddress); txNew.vin[0].scriptSig = CScript() << nHeight << OP_0; pblock->vtx[0] = txNew; pblocktemplate->vTxFees[0] = -nFees; // Update the Sapling commitment tree. for (const CTransaction& tx : pblock->vtx) { for (const OutputDescription& odesc : tx.vShieldedOutput) { sapling_tree.append(odesc.cmu); } } // Randomise nonce arith_uint256 nonce = UintToArith256(GetRandHash()); // Clear the top and bottom 16 bits (for local use as thread flags and counters) nonce <<= 32; nonce >>= 16; pblock->nNonce = ArithToUint256(nonce); uint32_t prevConsensusBranchId = CurrentEpochBranchId(pindexPrev->nHeight, chainparams.GetConsensus()); // Fill in header pblock->hashPrevBlock = pindexPrev->GetBlockHash(); if (IsActivationHeight(nHeight, chainparams.GetConsensus(), Consensus::UPGRADE_HEARTWOOD)) { pblock->hashLightClientRoot.SetNull(); } else if (chainparams.GetConsensus().NetworkUpgradeActive(nHeight, Consensus::UPGRADE_HEARTWOOD)) { pblock->hashLightClientRoot = view.GetHistoryRoot(prevConsensusBranchId); } else { pblock->hashLightClientRoot = sapling_tree.root(); } UpdateTime(pblock, chainparams.GetConsensus(), pindexPrev); pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, chainparams.GetConsensus()); pblock->nSolution.clear(); pblocktemplate->vTxSigOps[0] = GetLegacySigOpCount(pblock->vtx[0]); CValidationState state; if (!TestBlockValidity(state, chainparams, *pblock, pindexPrev, false, false)) throw std::runtime_error("CreateNewBlock(): TestBlockValidity failed"); } return pblocktemplate.release(); } ////////////////////////////////////////////////////////////////////////////// // // Internal miner // #ifdef ENABLE_MINING class MinerAddressScript : public CReserveScript { // CReserveScript requires implementing this function, so that if an // internal (not-visible) wallet address is used, the wallet can mark it as // important when a block is mined (so it then appears to the user). // If -mineraddress is set, the user already knows about and is managing the // address, so we don't need to do anything here. void KeepScript() {} }; void GetMinerAddress(MinerAddress &minerAddress) { // Try a transparent address first auto mAddrArg = GetArg("-mineraddress", ""); CTxDestination addr = DecodeDestination(mAddrArg); if (IsValidDestination(addr)) { boost::shared_ptr mAddr(new MinerAddressScript()); CKeyID keyID = boost::get(addr); mAddr->reserveScript = CScript() << OP_DUP << OP_HASH160 << ToByteVector(keyID) << OP_EQUALVERIFY << OP_CHECKSIG; minerAddress = mAddr; } else { // Try a Sapling address auto zaddr = DecodePaymentAddress(mAddrArg); if (IsValidPaymentAddress(zaddr)) { if (boost::get(&zaddr) != nullptr) { minerAddress = boost::get(zaddr); } } } } void IncrementExtraNonce(CBlock* pblock, const CBlockIndex* pindexPrev, unsigned int& nExtraNonce) { // Update nExtraNonce static uint256 hashPrevBlock; if (hashPrevBlock != pblock->hashPrevBlock) { nExtraNonce = 0; hashPrevBlock = pblock->hashPrevBlock; } ++nExtraNonce; unsigned int nHeight = pindexPrev->nHeight+1; // Height first in coinbase required for block.version=2 CMutableTransaction txCoinbase(pblock->vtx[0]); txCoinbase.vin[0].scriptSig = (CScript() << nHeight << CScriptNum(nExtraNonce)) + COINBASE_FLAGS; assert(txCoinbase.vin[0].scriptSig.size() <= 100); pblock->vtx[0] = txCoinbase; pblock->hashMerkleRoot = pblock->BuildMerkleTree(); } static bool ProcessBlockFound(const CBlock* pblock, const CChainParams& chainparams) { LogPrintf("%s\n", pblock->ToString()); LogPrintf("generated %s\n", FormatMoney(pblock->vtx[0].vout[0].nValue)); // Found a solution { LOCK(cs_main); if (pblock->hashPrevBlock != chainActive.Tip()->GetBlockHash()) return error("ZcashMiner: generated block is stale"); } // Inform about the new block GetMainSignals().BlockFound(pblock->GetHash()); // Process this block the same as if we had received it from another node CValidationState state; if (!ProcessNewBlock(state, chainparams, NULL, pblock, true, NULL)) return error("ZcashMiner: ProcessNewBlock, block not accepted"); TrackMinedBlock(pblock->GetHash()); return true; } void static BitcoinMiner(const CChainParams& chainparams) { LogPrintf("ZcashMiner started\n"); SetThreadPriority(THREAD_PRIORITY_LOWEST); RenameThread("zcash-miner"); // Each thread has its own counter unsigned int nExtraNonce = 0; MinerAddress minerAddress; GetMainSignals().AddressForMining(minerAddress); unsigned int n = chainparams.GetConsensus().nEquihashN; unsigned int k = chainparams.GetConsensus().nEquihashK; std::string solver = GetArg("-equihashsolver", "default"); assert(solver == "tromp" || solver == "default"); LogPrint("pow", "Using Equihash solver \"%s\" with n = %u, k = %u\n", solver, n, k); std::mutex m_cs; bool cancelSolver = false; boost::signals2::connection c = uiInterface.NotifyBlockTip.connect( [&m_cs, &cancelSolver](const uint256& hashNewTip) mutable { std::lock_guard lock{m_cs}; cancelSolver = true; } ); miningTimer.start(); try { // Throw an error if no address valid for mining was provided. if (!IsValidMinerAddress(minerAddress)) { throw std::runtime_error("No miner address available (mining requires a wallet or -mineraddress)"); } while (true) { if (chainparams.MiningRequiresPeers()) { // Busy-wait for the network to come online so we don't waste time mining // on an obsolete chain. In regtest mode we expect to fly solo. miningTimer.stop(); do { bool fvNodesEmpty; { LOCK(cs_vNodes); fvNodesEmpty = vNodes.empty(); } if (!fvNodesEmpty && !IsInitialBlockDownload(chainparams)) break; MilliSleep(1000); } while (true); miningTimer.start(); } // // Create new block // unsigned int nTransactionsUpdatedLast = mempool.GetTransactionsUpdated(); CBlockIndex* pindexPrev = chainActive.Tip(); unique_ptr pblocktemplate(CreateNewBlock(chainparams, minerAddress)); if (!pblocktemplate.get()) { if (GetArg("-mineraddress", "").empty()) { LogPrintf("Error in ZcashMiner: Keypool ran out, please call keypoolrefill before restarting the mining thread\n"); } else { // Should never reach here, because -mineraddress validity is checked in init.cpp LogPrintf("Error in ZcashMiner: Invalid -mineraddress\n"); } return; } CBlock *pblock = &pblocktemplate->block; IncrementExtraNonce(pblock, pindexPrev, nExtraNonce); LogPrintf("Running ZcashMiner with %u transactions in block (%u bytes)\n", pblock->vtx.size(), ::GetSerializeSize(*pblock, SER_NETWORK, PROTOCOL_VERSION)); // // Search // int64_t nStart = GetTime(); arith_uint256 hashTarget = arith_uint256().SetCompact(pblock->nBits); while (true) { // Hash state crypto_generichash_blake2b_state state; EhInitialiseState(n, k, state); // I = the block header minus nonce and solution. CEquihashInput I{*pblock}; CDataStream ss(SER_NETWORK, PROTOCOL_VERSION); ss << I; // H(I||... crypto_generichash_blake2b_update(&state, (unsigned char*)&ss[0], ss.size()); // H(I||V||... crypto_generichash_blake2b_state curr_state; curr_state = state; crypto_generichash_blake2b_update(&curr_state, pblock->nNonce.begin(), pblock->nNonce.size()); // (x_1, x_2, ...) = A(I, V, n, k) LogPrint("pow", "Running Equihash solver \"%s\" with nNonce = %s\n", solver, pblock->nNonce.ToString()); std::function)> validBlock = [&pblock, &hashTarget, &chainparams, &m_cs, &cancelSolver, &minerAddress] (std::vector soln) { // Write the solution to the hash and compute the result. LogPrint("pow", "- Checking solution against target\n"); pblock->nSolution = soln; solutionTargetChecks.increment(); if (UintToArith256(pblock->GetHash()) > hashTarget) { return false; } // Found a solution SetThreadPriority(THREAD_PRIORITY_NORMAL); LogPrintf("ZcashMiner:\n"); LogPrintf("proof-of-work found \n hash: %s \ntarget: %s\n", pblock->GetHash().GetHex(), hashTarget.GetHex()); if (ProcessBlockFound(pblock, chainparams)) { // Ignore chain updates caused by us std::lock_guard lock{m_cs}; cancelSolver = false; } SetThreadPriority(THREAD_PRIORITY_LOWEST); boost::apply_visitor(KeepMinerAddress(), minerAddress); // In regression test mode, stop mining after a block is found. if (chainparams.MineBlocksOnDemand()) { // Increment here because throwing skips the call below ehSolverRuns.increment(); throw boost::thread_interrupted(); } return true; }; std::function cancelled = [&m_cs, &cancelSolver](EhSolverCancelCheck pos) { std::lock_guard lock{m_cs}; return cancelSolver; }; // TODO: factor this out into a function with the same API for each solver. if (solver == "tromp") { // Create solver and initialize it. equi eq(1); eq.setstate(&curr_state); // Initialization done, start algo driver. eq.digit0(0); eq.xfull = eq.bfull = eq.hfull = 0; eq.showbsizes(0); for (u32 r = 1; r < WK; r++) { (r&1) ? eq.digitodd(r, 0) : eq.digiteven(r, 0); eq.xfull = eq.bfull = eq.hfull = 0; eq.showbsizes(r); } eq.digitK(0); ehSolverRuns.increment(); // Convert solution indices to byte array (decompress) and pass it to validBlock method. for (size_t s = 0; s < eq.nsols; s++) { LogPrint("pow", "Checking solution %d\n", s+1); std::vector index_vector(PROOFSIZE); for (size_t i = 0; i < PROOFSIZE; i++) { index_vector[i] = eq.sols[s][i]; } std::vector sol_char = GetMinimalFromIndices(index_vector, DIGITBITS); if (validBlock(sol_char)) { // If we find a POW solution, do not try other solutions // because they become invalid as we created a new block in blockchain. break; } } } else { try { // If we find a valid block, we rebuild bool found = EhOptimisedSolve(n, k, curr_state, validBlock, cancelled); ehSolverRuns.increment(); if (found) { break; } } catch (EhSolverCancelledException&) { LogPrint("pow", "Equihash solver cancelled\n"); std::lock_guard lock{m_cs}; cancelSolver = false; } } // Check for stop or if block needs to be rebuilt boost::this_thread::interruption_point(); // Regtest mode doesn't require peers if (vNodes.empty() && chainparams.MiningRequiresPeers()) break; if ((UintToArith256(pblock->nNonce) & 0xffff) == 0xffff) break; if (mempool.GetTransactionsUpdated() != nTransactionsUpdatedLast && GetTime() - nStart > 60) break; if (pindexPrev != chainActive.Tip()) break; // Update nNonce and nTime pblock->nNonce = ArithToUint256(UintToArith256(pblock->nNonce) + 1); UpdateTime(pblock, chainparams.GetConsensus(), pindexPrev); if (chainparams.GetConsensus().nPowAllowMinDifficultyBlocksAfterHeight != boost::none) { // Changing pblock->nTime can change work required on testnet: hashTarget.SetCompact(pblock->nBits); } } } } catch (const boost::thread_interrupted&) { miningTimer.stop(); c.disconnect(); LogPrintf("ZcashMiner terminated\n"); throw; } catch (const std::runtime_error &e) { miningTimer.stop(); c.disconnect(); LogPrintf("ZcashMiner runtime error: %s\n", e.what()); return; } miningTimer.stop(); c.disconnect(); } void GenerateBitcoins(bool fGenerate, int nThreads, const CChainParams& chainparams) { static boost::thread_group* minerThreads = NULL; if (nThreads < 0) nThreads = GetNumCores(); if (minerThreads != NULL) { minerThreads->interrupt_all(); minerThreads->join_all(); delete minerThreads; minerThreads = NULL; } if (nThreads == 0 || !fGenerate) return; minerThreads = new boost::thread_group(); for (int i = 0; i < nThreads; i++) { minerThreads->create_thread(boost::bind(&BitcoinMiner, boost::cref(chainparams))); } } #endif // ENABLE_MINING