zcashd/src/test/coins_tests.cpp

766 lines
28 KiB
C++

// Copyright (c) 2014 The Bitcoin Core developers
// Copyright (c) 2016-2023 The Zcash developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or https://www.opensource.org/licenses/mit-license.php .
#include "coins.h"
#include "script/standard.h"
#include "uint256.h"
#include "util/strencodings.h"
#include "test/test_bitcoin.h"
#include "consensus/validation.h"
#include "main.h"
#include "undo.h"
#include "primitives/transaction.h"
#include "pubkey.h"
#include "transaction_builder.h"
#include "zcash/Note.hpp"
#include "zcash/address/mnemonic.h"
#include <vector>
#include <map>
#include <boost/test/unit_test.hpp>
#include "zcash/IncrementalMerkleTree.hpp"
namespace
{
class CCoinsViewTest : public CCoinsView
{
uint256 hashBestBlock_;
uint256 hashBestSproutAnchor_;
uint256 hashBestSaplingAnchor_;
uint256 hashBestOrchardAnchor_;
std::map<uint256, CCoins> map_;
std::map<uint256, SproutMerkleTree> mapSproutAnchors_;
std::map<uint256, SaplingMerkleTree> mapSaplingAnchors_;
std::map<uint256, OrchardMerkleFrontier> mapOrchardAnchors_;
std::map<uint256, bool> mapSproutNullifiers_;
std::map<uint256, bool> mapSaplingNullifiers_;
std::map<uint256, bool> mapOrchardNullifiers_;
public:
CCoinsViewTest() {
hashBestSproutAnchor_ = SproutMerkleTree::empty_root();
hashBestSaplingAnchor_ = SaplingMerkleTree::empty_root();
hashBestOrchardAnchor_ = OrchardMerkleFrontier::empty_root();
}
~CCoinsViewTest() {}
bool GetSproutAnchorAt(const uint256& rt, SproutMerkleTree &tree) const {
if (rt == SproutMerkleTree::empty_root()) {
SproutMerkleTree new_tree;
tree = new_tree;
return true;
}
std::map<uint256, SproutMerkleTree>::const_iterator it = mapSproutAnchors_.find(rt);
if (it == mapSproutAnchors_.end()) {
return false;
} else {
tree = it->second;
return true;
}
}
bool GetSaplingAnchorAt(const uint256& rt, SaplingMerkleTree &tree) const {
if (rt == SaplingMerkleTree::empty_root()) {
SaplingMerkleTree new_tree;
tree = new_tree;
return true;
}
std::map<uint256, SaplingMerkleTree>::const_iterator it = mapSaplingAnchors_.find(rt);
if (it == mapSaplingAnchors_.end()) {
return false;
} else {
tree = it->second;
return true;
}
}
bool GetOrchardAnchorAt(const uint256& rt, OrchardMerkleFrontier &tree) const {
if (rt == OrchardMerkleFrontier::empty_root()) {
OrchardMerkleFrontier new_tree;
tree = new_tree;
return true;
}
std::map<uint256, OrchardMerkleFrontier>::const_iterator it = mapOrchardAnchors_.find(rt);
if (it == mapOrchardAnchors_.end()) {
return false;
} else {
tree = it->second;
return true;
}
}
bool GetNullifier(const uint256 &nf, ShieldedType type) const
{
const std::map<uint256, bool>* mapToUse;
switch (type) {
case SPROUT:
mapToUse = &mapSproutNullifiers_;
break;
case SAPLING:
mapToUse = &mapSaplingNullifiers_;
break;
case ORCHARD:
mapToUse = &mapOrchardNullifiers_;
break;
default:
throw std::runtime_error("Unknown shielded type");
}
std::map<uint256, bool>::const_iterator it = mapToUse->find(nf);
if (it == mapToUse->end()) {
return false;
} else {
// The map shouldn't contain any false entries.
assert(it->second);
return true;
}
}
uint256 GetBestAnchor(ShieldedType type) const {
switch (type) {
case SPROUT:
return hashBestSproutAnchor_;
break;
case SAPLING:
return hashBestSaplingAnchor_;
break;
case ORCHARD:
return hashBestOrchardAnchor_;
break;
default:
throw std::runtime_error("Unknown shielded type");
}
}
bool GetCoins(const uint256& txid, CCoins& coins) const
{
std::map<uint256, CCoins>::const_iterator it = map_.find(txid);
if (it == map_.end()) {
return false;
}
coins = it->second;
if (coins.IsPruned() && InsecureRandBool() == 0) {
// Randomly return false in case of an empty entry.
return false;
}
return true;
}
bool HaveCoins(const uint256& txid) const
{
CCoins coins;
return GetCoins(txid, coins);
}
uint256 GetBestBlock() const { return hashBestBlock_; }
void BatchWriteNullifiers(CNullifiersMap& mapNullifiers, std::map<uint256, bool>& cacheNullifiers)
{
for (CNullifiersMap::iterator it = mapNullifiers.begin(); it != mapNullifiers.end(); ) {
if (it->second.flags & CNullifiersCacheEntry::DIRTY) {
// Same optimization used in CCoinsViewDB is to only write dirty entries.
if (it->second.entered) {
cacheNullifiers[it->first] = true;
} else {
cacheNullifiers.erase(it->first);
}
}
it = mapNullifiers.erase(it);
}
}
template<typename Tree, typename Map, typename MapEntry>
void BatchWriteAnchors(Map& mapAnchors, std::map<uint256, Tree>& cacheAnchors)
{
for (auto it = mapAnchors.begin(); it != mapAnchors.end(); ) {
if (it->second.flags & MapEntry::DIRTY) {
// Same optimization used in CCoinsViewDB is to only write dirty entries.
if (it->second.entered) {
if (it->first != Tree::empty_root()) {
auto ret = cacheAnchors.insert(std::make_pair(it->first, Tree())).first;
ret->second = it->second.tree;
}
} else {
cacheAnchors.erase(it->first);
}
}
it = mapAnchors.erase(it);
}
}
HistoryIndex GetHistoryLength(uint32_t epochId) const { return 0; }
HistoryNode GetHistoryAt(uint32_t epochId, HistoryIndex index) const { return HistoryNode(); }
uint256 GetHistoryRoot(uint32_t epochId) const { return uint256(); }
bool BatchWrite(CCoinsMap& mapCoins,
const uint256& hashBlock,
const uint256& hashSproutAnchor,
const uint256& hashSaplingAnchor,
const uint256& hashOrchardAnchor,
CAnchorsSproutMap& mapSproutAnchors,
CAnchorsSaplingMap& mapSaplingAnchors,
CAnchorsOrchardMap& mapOrchardAnchors,
CNullifiersMap& mapSproutNullifiers,
CNullifiersMap& mapSaplingNullifiers,
CNullifiersMap& mapOrchardNullifiers,
CHistoryCacheMap &historyCacheMap)
{
for (CCoinsMap::iterator it = mapCoins.begin(); it != mapCoins.end(); ) {
if (it->second.flags & CCoinsCacheEntry::DIRTY) {
// Same optimization used in CCoinsViewDB is to only write dirty entries.
map_[it->first] = it->second.coins;
if (it->second.coins.IsPruned() && InsecureRandRange(3) == 0) {
// Randomly delete empty entries on write.
map_.erase(it->first);
}
}
it = mapCoins.erase(it);
}
BatchWriteAnchors<SproutMerkleTree, CAnchorsSproutMap, CAnchorsSproutCacheEntry>(mapSproutAnchors, mapSproutAnchors_);
BatchWriteAnchors<SaplingMerkleTree, CAnchorsSaplingMap, CAnchorsSaplingCacheEntry>(mapSaplingAnchors, mapSaplingAnchors_);
BatchWriteAnchors<OrchardMerkleFrontier, CAnchorsOrchardMap, CAnchorsOrchardCacheEntry>(mapOrchardAnchors, mapOrchardAnchors_);
BatchWriteNullifiers(mapSproutNullifiers, mapSproutNullifiers_);
BatchWriteNullifiers(mapSaplingNullifiers, mapSaplingNullifiers_);
BatchWriteNullifiers(mapOrchardNullifiers, mapOrchardNullifiers_);
if (!hashBlock.IsNull())
hashBestBlock_ = hashBlock;
if (!hashSproutAnchor.IsNull())
hashBestSproutAnchor_ = hashSproutAnchor;
if (!hashSaplingAnchor.IsNull())
hashBestSaplingAnchor_ = hashSaplingAnchor;
if (!hashOrchardAnchor.IsNull())
hashBestOrchardAnchor_ = hashOrchardAnchor;
return true;
}
bool GetStats(CCoinsStats& stats) const { return false; }
};
class CCoinsViewCacheTest : public CCoinsViewCache
{
public:
CCoinsViewCacheTest(CCoinsView* base) : CCoinsViewCache(base) {}
~CCoinsViewCacheTest() {}
void SelfTest() const
{
// Manually recompute the dynamic usage of the whole data, and compare it.
size_t ret = memusage::DynamicUsage(cacheCoins) +
memusage::DynamicUsage(cacheSproutAnchors) +
memusage::DynamicUsage(cacheSaplingAnchors) +
memusage::DynamicUsage(cacheOrchardAnchors) +
memusage::DynamicUsage(cacheSproutNullifiers) +
memusage::DynamicUsage(cacheSaplingNullifiers) +
memusage::DynamicUsage(cacheOrchardNullifiers) +
memusage::DynamicUsage(historyCacheMap);
for (CCoinsMap::iterator it = cacheCoins.begin(); it != cacheCoins.end(); it++) {
ret += it->second.coins.DynamicMemoryUsage();
}
BOOST_CHECK_EQUAL(DynamicMemoryUsage(), ret);
}
};
class TxWithNullifiers
{
public:
CTransaction tx;
uint256 sproutNullifier;
uint256 saplingNullifier;
uint256 orchardNullifier;
TxWithNullifiers()
{
CMutableTransaction mutableTx;
sproutNullifier = InsecureRand256();
JSDescription jsd;
jsd.nullifiers[0] = sproutNullifier;
mutableTx.vJoinSplit.emplace_back(jsd);
saplingNullifier = InsecureRand256();
SpendDescription sd;
sd.nullifier = saplingNullifier;
mutableTx.vShieldedSpend.push_back(sd);
// The Orchard bundle builder always pads to two Actions, so we can just
// use an empty builder to create a dummy Orchard bundle.
uint256 orchardAnchor;
uint256 dataToBeSigned;
auto builder = orchard::Builder(true, true, orchardAnchor);
mutableTx.orchardBundle = builder.Build().value().ProveAndSign({}, dataToBeSigned).value();
orchardNullifier = mutableTx.orchardBundle.GetNullifiers()[0];
tx = CTransaction(mutableTx);
}
};
}
uint256 appendRandomSproutCommitment(SproutMerkleTree &tree)
{
libzcash::SproutSpendingKey k = libzcash::SproutSpendingKey::random();
libzcash::SproutPaymentAddress addr = k.address();
libzcash::SproutNote note(addr.a_pk, 0, uint256(), uint256());
auto cm = note.cm();
tree.append(cm);
return cm;
}
template<typename Tree> void AppendRandomLeaf(Tree &tree);
template<> void AppendRandomLeaf(SproutMerkleTree &tree) { tree.append(InsecureRand256()); }
template<> void AppendRandomLeaf(SaplingMerkleTree &tree) { tree.append(InsecureRand256()); }
template<> void AppendRandomLeaf(OrchardMerkleFrontier &tree) {
// OrchardMerkleFrontier only has APIs to append entire bundles, but
// fortunately the tests only require that the tree root change.
// TODO: Remove the need to create proofs by having a testing-only way to
// append a random leaf to OrchardMerkleFrontier.
uint256 orchardAnchor;
uint256 dataToBeSigned;
auto builder = orchard::Builder(true, true, orchardAnchor);
auto bundle = builder.Build().value().ProveAndSign({}, dataToBeSigned).value();
tree.AppendBundle(bundle);
}
template<typename Tree> bool GetAnchorAt(const CCoinsViewCacheTest &cache, const uint256 &rt, Tree &tree);
template<> bool GetAnchorAt(const CCoinsViewCacheTest &cache, const uint256 &rt, SproutMerkleTree &tree) { return cache.GetSproutAnchorAt(rt, tree); }
template<> bool GetAnchorAt(const CCoinsViewCacheTest &cache, const uint256 &rt, SaplingMerkleTree &tree) { return cache.GetSaplingAnchorAt(rt, tree); }
template<> bool GetAnchorAt(const CCoinsViewCacheTest &cache, const uint256 &rt, OrchardMerkleFrontier &tree) { return cache.GetOrchardAnchorAt(rt, tree); }
BOOST_FIXTURE_TEST_SUITE(coins_tests, BasicTestingSetup)
void checkNullifierCache(const CCoinsViewCacheTest &cache, const TxWithNullifiers &txWithNullifiers, bool shouldBeInCache) {
// Make sure the nullifiers have not gotten mixed up
BOOST_CHECK(!cache.GetNullifier(txWithNullifiers.sproutNullifier, SAPLING));
BOOST_CHECK(!cache.GetNullifier(txWithNullifiers.sproutNullifier, ORCHARD));
BOOST_CHECK(!cache.GetNullifier(txWithNullifiers.saplingNullifier, SPROUT));
BOOST_CHECK(!cache.GetNullifier(txWithNullifiers.saplingNullifier, ORCHARD));
BOOST_CHECK(!cache.GetNullifier(txWithNullifiers.orchardNullifier, SPROUT));
BOOST_CHECK(!cache.GetNullifier(txWithNullifiers.orchardNullifier, SAPLING));
// Check if the nullifiers either are or are not in the cache
bool containsSproutNullifier = cache.GetNullifier(txWithNullifiers.sproutNullifier, SPROUT);
bool containsSaplingNullifier = cache.GetNullifier(txWithNullifiers.saplingNullifier, SAPLING);
bool containsOrchardNullifier = cache.GetNullifier(txWithNullifiers.orchardNullifier, ORCHARD);
BOOST_CHECK(containsSproutNullifier == shouldBeInCache);
BOOST_CHECK(containsSaplingNullifier == shouldBeInCache);
BOOST_CHECK(containsOrchardNullifier == shouldBeInCache);
}
BOOST_AUTO_TEST_CASE(chained_joinsplits)
{
// TODO update this or add a similar test when the SaplingNote class exist
CCoinsViewTest base;
CCoinsViewCacheTest cache(&base);
SproutMerkleTree tree;
JSDescription js1;
js1.anchor = tree.root();
js1.commitments[0] = appendRandomSproutCommitment(tree);
js1.commitments[1] = appendRandomSproutCommitment(tree);
// Although it's not possible given our assumptions, if
// two joinsplits create the same treestate twice, we should
// still be able to anchor to it.
JSDescription js1b;
js1b.anchor = tree.root();
js1b.commitments[0] = js1.commitments[0];
js1b.commitments[1] = js1.commitments[1];
JSDescription js2;
JSDescription js3;
js2.anchor = tree.root();
js3.anchor = tree.root();
js2.commitments[0] = appendRandomSproutCommitment(tree);
js2.commitments[1] = appendRandomSproutCommitment(tree);
js3.commitments[0] = appendRandomSproutCommitment(tree);
js3.commitments[1] = appendRandomSproutCommitment(tree);
{
CMutableTransaction mtx;
mtx.vJoinSplit.push_back(js2);
BOOST_CHECK(cache.CheckShieldedRequirements(mtx) == tl::unexpected(UnsatisfiedShieldedReq::SproutUnknownAnchor));
}
{
// js2 is trying to anchor to js1 but js1
// appears afterwards -- not a permitted ordering
CMutableTransaction mtx;
mtx.vJoinSplit.push_back(js2);
mtx.vJoinSplit.push_back(js1);
BOOST_CHECK(cache.CheckShieldedRequirements(mtx) == tl::unexpected(UnsatisfiedShieldedReq::SproutUnknownAnchor));
}
{
CMutableTransaction mtx;
mtx.vJoinSplit.push_back(js1);
mtx.vJoinSplit.push_back(js2);
BOOST_CHECK(cache.CheckShieldedRequirements(mtx).has_value());
}
{
CMutableTransaction mtx;
mtx.vJoinSplit.push_back(js1);
mtx.vJoinSplit.push_back(js2);
mtx.vJoinSplit.push_back(js3);
BOOST_CHECK(cache.CheckShieldedRequirements(mtx).has_value());
}
{
CMutableTransaction mtx;
mtx.vJoinSplit.push_back(js1);
mtx.vJoinSplit.push_back(js1b);
mtx.vJoinSplit.push_back(js2);
mtx.vJoinSplit.push_back(js3);
BOOST_CHECK(cache.CheckShieldedRequirements(mtx).has_value());
}
}
static const unsigned int NUM_SIMULATION_ITERATIONS = 40000;
// This is a large randomized insert/remove simulation test on a variable-size
// stack of caches on top of CCoinsViewTest.
//
// It will randomly create/update/delete CCoins entries to a tip of caches, with
// txids picked from a limited list of random 256-bit hashes. Occasionally, a
// new tip is added to the stack of caches, or the tip is flushed and removed.
//
// During the process, booleans are kept to make sure that the randomized
// operation hits all branches.
BOOST_AUTO_TEST_CASE(coins_cache_simulation_test)
{
// Various coverage trackers.
bool removed_all_caches = false;
bool reached_4_caches = false;
bool added_an_entry = false;
bool removed_an_entry = false;
bool updated_an_entry = false;
bool found_an_entry = false;
bool missed_an_entry = false;
// A simple map to track what we expect the cache stack to represent.
std::map<uint256, CCoins> result;
// The cache stack.
CCoinsViewTest base; // A CCoinsViewTest at the bottom.
std::vector<CCoinsViewCacheTest*> stack; // A stack of CCoinsViewCaches on top.
stack.push_back(new CCoinsViewCacheTest(&base)); // Start with one cache.
// Use a limited set of random transaction ids, so we do test overwriting entries.
std::vector<uint256> txids;
txids.resize(NUM_SIMULATION_ITERATIONS / 8);
for (unsigned int i = 0; i < txids.size(); i++) {
txids[i] = InsecureRand256();
}
for (unsigned int i = 0; i < NUM_SIMULATION_ITERATIONS; i++) {
// Do a random modification.
{
uint256 txid = txids[InsecureRandRange(txids.size())]; // txid we're going to modify in this iteration.
CCoins& coins = result[txid];
CCoinsModifier entry = stack.back()->ModifyCoins(txid);
BOOST_CHECK(coins == *entry);
if (InsecureRandRange(5) == 0 || coins.IsPruned()) {
if (coins.IsPruned()) {
added_an_entry = true;
} else {
updated_an_entry = true;
}
coins.nVersion = InsecureRand32();
coins.vout.resize(1);
coins.vout[0].nValue = InsecureRand32();
*entry = coins;
} else {
coins.Clear();
entry->Clear();
removed_an_entry = true;
}
}
// Once every 1000 iterations and at the end, verify the full cache.
if (InsecureRandRange(1000) == 1 || i == NUM_SIMULATION_ITERATIONS - 1) {
for (std::map<uint256, CCoins>::iterator it = result.begin(); it != result.end(); it++) {
const CCoins* coins = stack.back()->AccessCoins(it->first);
if (coins) {
BOOST_CHECK(*coins == it->second);
found_an_entry = true;
} else {
BOOST_CHECK(it->second.IsPruned());
missed_an_entry = true;
}
}
for (const CCoinsViewCacheTest *test : stack) {
test->SelfTest();
}
}
if (InsecureRandRange(100) == 0) {
// Every 100 iterations, change the cache stack.
if (stack.size() > 0 && InsecureRandBool() == 0) {
stack.back()->Flush();
delete stack.back();
stack.pop_back();
}
if (stack.size() == 0 || (stack.size() < 4 && InsecureRandBool())) {
CCoinsView* tip = &base;
if (stack.size() > 0) {
tip = stack.back();
} else {
removed_all_caches = true;
}
stack.push_back(new CCoinsViewCacheTest(tip));
if (stack.size() == 4) {
reached_4_caches = true;
}
}
}
}
// Clean up the stack.
while (stack.size() > 0) {
delete stack.back();
stack.pop_back();
}
// Verify coverage.
BOOST_CHECK(removed_all_caches);
BOOST_CHECK(reached_4_caches);
BOOST_CHECK(added_an_entry);
BOOST_CHECK(removed_an_entry);
BOOST_CHECK(updated_an_entry);
BOOST_CHECK(found_an_entry);
BOOST_CHECK(missed_an_entry);
}
BOOST_AUTO_TEST_CASE(coins_coinbase_spends)
{
CCoinsViewTest base;
CCoinsViewCacheTest cache(&base);
// Create coinbase transaction
CMutableTransaction mtx;
mtx.vin.resize(1);
mtx.vin[0].scriptSig = CScript() << OP_1;
mtx.vin[0].nSequence = 0;
mtx.vout.resize(1);
mtx.vout[0].nValue = 500;
mtx.vout[0].scriptPubKey = CScript() << OP_1;
CTransaction tx(mtx);
BOOST_CHECK(tx.IsCoinBase());
CValidationState state;
UpdateCoins(tx, cache, 100);
// Create coinbase spend
CMutableTransaction mtx2;
mtx2.vin.resize(1);
mtx2.vin[0].prevout = COutPoint(tx.GetHash(), 0);
mtx2.vin[0].scriptSig = CScript() << OP_1;
mtx2.vin[0].nSequence = 0;
{
CTransaction tx2(mtx2);
BOOST_CHECK(Consensus::CheckTxInputs(tx2, state, cache, 100+COINBASE_MATURITY, Params().GetConsensus()));
}
mtx2.vout.resize(1);
mtx2.vout[0].nValue = 500;
mtx2.vout[0].scriptPubKey = CScript() << OP_1;
{
CTransaction tx2(mtx2);
BOOST_CHECK(!Consensus::CheckTxInputs(tx2, state, cache, 100+COINBASE_MATURITY, Params().GetConsensus()));
BOOST_CHECK(state.GetRejectReason() == "bad-txns-coinbase-spend-has-transparent-outputs");
}
}
// This test is similar to the previous test
// except the emphasis is on testing the functionality of UpdateCoins
// random txs are created and UpdateCoins is used to update the cache stack
BOOST_AUTO_TEST_CASE(updatecoins_simulation_test)
{
// A simple map to track what we expect the cache stack to represent.
std::map<uint256, CCoins> result;
// The cache stack.
CCoinsViewTest base; // A CCoinsViewTest at the bottom.
std::vector<CCoinsViewCacheTest*> stack; // A stack of CCoinsViewCaches on top.
stack.push_back(new CCoinsViewCacheTest(&base)); // Start with one cache.
// Track the txids we've used and whether they have been spent or not
std::map<uint256, CAmount> coinbaseids;
std::set<uint256> alltxids;
for (unsigned int i = 0; i < NUM_SIMULATION_ITERATIONS; i++) {
{
CMutableTransaction tx;
tx.vin.resize(1);
tx.vout.resize(1);
tx.vout[0].nValue = i; //Keep txs unique
unsigned int height = InsecureRand32();
// 1/10 times create a coinbase
if (InsecureRandRange(10) == 0 || coinbaseids.size() < 10) {
coinbaseids[tx.GetHash()] = tx.vout[0].nValue;
assert(CTransaction(tx).IsCoinBase());
}
// 9/10 times create a regular tx
else {
uint256 prevouthash;
// equally likely to spend coinbase or non coinbase
std::set<uint256>::iterator txIt = alltxids.lower_bound(InsecureRand256());
if (txIt == alltxids.end()) {
txIt = alltxids.begin();
}
prevouthash = *txIt;
// Construct the tx to spend the coins of prevouthash
tx.vin[0].prevout.hash = prevouthash;
tx.vin[0].prevout.n = 0;
// Update the expected result of prevouthash to know these coins are spent
CCoins& oldcoins = result[prevouthash];
oldcoins.Clear();
alltxids.erase(prevouthash);
coinbaseids.erase(prevouthash);
assert(!CTransaction(tx).IsCoinBase());
}
// Track this tx to possibly spend later
alltxids.insert(tx.GetHash());
// Update the expected result to know about the new output coins
CCoins &coins = result[tx.GetHash()];
coins.FromTx(tx, height);
UpdateCoins(tx, *(stack.back()), height);
}
// Once every 1000 iterations and at the end, verify the full cache.
if (InsecureRandRange(1000) == 1 || i == NUM_SIMULATION_ITERATIONS - 1) {
for (std::map<uint256, CCoins>::iterator it = result.begin(); it != result.end(); it++) {
const CCoins* coins = stack.back()->AccessCoins(it->first);
if (coins) {
BOOST_CHECK(*coins == it->second);
} else {
BOOST_CHECK(it->second.IsPruned());
}
}
}
if (InsecureRandRange(100) == 0) {
// Every 100 iterations, change the cache stack.
if (stack.size() > 0 && InsecureRandBool() == 0) {
stack.back()->Flush();
delete stack.back();
stack.pop_back();
}
if (stack.size() == 0 || (stack.size() < 4 && InsecureRandBool())) {
CCoinsView* tip = &base;
if (stack.size() > 0) {
tip = stack.back();
}
stack.push_back(new CCoinsViewCacheTest(tip));
}
}
}
// Clean up the stack.
while (stack.size() > 0) {
delete stack.back();
stack.pop_back();
}
}
BOOST_AUTO_TEST_CASE(ccoins_serialization)
{
// Good example
CDataStream ss1(ParseHex("0104835800816115944e077fe7c803cfa57f29b36bf87c1d358bb85e"), SER_DISK, CLIENT_VERSION);
CCoins cc1;
ss1 >> cc1;
BOOST_CHECK_EQUAL(cc1.nVersion, 1);
BOOST_CHECK_EQUAL(cc1.fCoinBase, false);
BOOST_CHECK_EQUAL(cc1.nHeight, 203998);
BOOST_CHECK_EQUAL(cc1.vout.size(), 2);
BOOST_CHECK_EQUAL(cc1.IsAvailable(0), false);
BOOST_CHECK_EQUAL(cc1.IsAvailable(1), true);
BOOST_CHECK_EQUAL(cc1.vout[1].nValue, 60000000000ULL);
BOOST_CHECK_EQUAL(HexStr(cc1.vout[1].scriptPubKey), HexStr(GetScriptForDestination(CKeyID(uint160(ParseHex("816115944e077fe7c803cfa57f29b36bf87c1d35"))))));
// Good example
CDataStream ss2(ParseHex("0109044086ef97d5790061b01caab50f1b8e9c50a5057eb43c2d9563a4eebbd123008c988f1a4a4de2161e0f50aac7f17e7f9555caa486af3b"), SER_DISK, CLIENT_VERSION);
CCoins cc2;
ss2 >> cc2;
BOOST_CHECK_EQUAL(cc2.nVersion, 1);
BOOST_CHECK_EQUAL(cc2.fCoinBase, true);
BOOST_CHECK_EQUAL(cc2.nHeight, 120891);
BOOST_CHECK_EQUAL(cc2.vout.size(), 17);
for (int i = 0; i < 17; i++) {
BOOST_CHECK_EQUAL(cc2.IsAvailable(i), i == 4 || i == 16);
}
BOOST_CHECK_EQUAL(cc2.vout[4].nValue, 234925952);
BOOST_CHECK_EQUAL(HexStr(cc2.vout[4].scriptPubKey), HexStr(GetScriptForDestination(CKeyID(uint160(ParseHex("61b01caab50f1b8e9c50a5057eb43c2d9563a4ee"))))));
BOOST_CHECK_EQUAL(cc2.vout[16].nValue, 110397);
BOOST_CHECK_EQUAL(HexStr(cc2.vout[16].scriptPubKey), HexStr(GetScriptForDestination(CKeyID(uint160(ParseHex("8c988f1a4a4de2161e0f50aac7f17e7f9555caa4"))))));
// Smallest possible example
CDataStream ssx(SER_DISK, CLIENT_VERSION);
BOOST_CHECK_EQUAL(HexStr(ssx.begin(), ssx.end()), "");
CDataStream ss3(ParseHex("0002000600"), SER_DISK, CLIENT_VERSION);
CCoins cc3;
ss3 >> cc3;
BOOST_CHECK_EQUAL(cc3.nVersion, 0);
BOOST_CHECK_EQUAL(cc3.fCoinBase, false);
BOOST_CHECK_EQUAL(cc3.nHeight, 0);
BOOST_CHECK_EQUAL(cc3.vout.size(), 1);
BOOST_CHECK_EQUAL(cc3.IsAvailable(0), true);
BOOST_CHECK_EQUAL(cc3.vout[0].nValue, 0);
BOOST_CHECK_EQUAL(cc3.vout[0].scriptPubKey.size(), 0);
// scriptPubKey that ends beyond the end of the stream
CDataStream ss4(ParseHex("0002000800"), SER_DISK, CLIENT_VERSION);
try {
CCoins cc4;
ss4 >> cc4;
BOOST_CHECK_MESSAGE(false, "We should have thrown");
} catch (const std::ios_base::failure& e) {
}
// Very large scriptPubKey (3*10^9 bytes) past the end of the stream
CDataStream tmp(SER_DISK, CLIENT_VERSION);
uint64_t x = 3000000000ULL;
tmp << VARINT(x);
BOOST_CHECK_EQUAL(HexStr(tmp.begin(), tmp.end()), "8a95c0bb00");
CDataStream ss5(ParseHex("0002008a95c0bb0000"), SER_DISK, CLIENT_VERSION);
try {
CCoins cc5;
ss5 >> cc5;
BOOST_CHECK_MESSAGE(false, "We should have thrown");
} catch (const std::ios_base::failure& e) {
}
}
BOOST_AUTO_TEST_SUITE_END()