Daira Hopwood

@feministPLT daira@z.cash
@daira on chat.zcashcommunity.com
Zcon0, Montreal, 27 June 2018
Layering of a proof system

Statements

- What are you trying to prove?
-- For given x , I know a witness w , such that $\mathrm{P}(\mathrm{x}, \mathrm{w})$.
- Always use types
-- For given x : X, I know a witness w : W, such that $\mathrm{P}(\mathrm{x}, \mathrm{w})$.
- Types allow the proving library API or DSL to catch as many low-level mistakes as possible.
- Examples
-- For given h : Byte[32], I know w : Byte[64], such that BLAKE2s("Zcon0_ex", w) = h.
-- For given Merkle tree root rt : Hash, I know a leaf and path (leaf : Hash, path :
Hash[Depth], pos : Nat) in the tree rooted at rt
-- For given pk : Point, I know sk : Scalar such that [sk] G = pk.
- Statements are composable while hiding intermediates
-- E.g. For given rt : Hash, I know (w : Preimage, leaf : Hash, path : Hash[Depth], pos : Nat) such that $\mathrm{H}(\mathrm{w})=$ leaf and (leaf, path, pos) is in the tree rooted at rt .
- The proving system is a black box (nearly). You can design statements (almost) independently of knowing how it works.

Ok, but how do we express statements?

- For this session: Rank 1 Constraint Systems.
- Applies to PHGR13, Groth16, Bulletproofs, bunch of others. Reusable knowledge.
- Set a finite field F . All finite fields are $\mathrm{GF}\left(\mathrm{p}^{\mathrm{m}}\right)$. For this talk, we focus on $\mathrm{F}=\mathrm{GF}(\mathrm{p})$. -- $\operatorname{GF}\left(2^{m}\right)$ is underexplored.
- We have a set of variables \underline{x} : $\underline{F}, \underline{w}$: \underline{E}. The R1CS is defined by constraints $(\mathbf{A}) \times(B)$ $\equiv(C)$ where A, B, C are linear combinations $\mathrm{a}_{0} \cdot \mathrm{u}_{0}+\mathrm{a}_{1} \cdot \mathrm{u}_{1}+\ldots$
- This is complete for bounded statements.
- How do we express a given statement efficiently?
- How do we design statements that we can express more efficiently?

Arithmetic circuit
$v \leftarrow$ don't need this (for now)
R1CS
$\checkmark \leftarrow$ somebody else's problem
QAP...

- By designing at the R1CS level, we expose the main determinant of proving efficiency: number of constraints.
- R1CS programming is low-level, but not like assembler -- more like an esoteric language.
- Graph of proving time vs circuit size [thanks to @str4d]: ~linear with sharp steps at powers of two.

Sapling input circuit performance

- Verification time for SNARKs has some dependence on instance size, but can use hashing trick, so effectively $\mathrm{O}(1)$.

Circuits are constraint programs

- $y=x^{2} \longleftrightarrow x=+/-$ sqrt(y) (if it exists)
- $\mathrm{y}=\mathrm{H}(\mathrm{x}) \longleftrightarrow \mathrm{x}$ is an H-preimage of y (and prover knows it)
- $y=E_{k}(x) \longleftrightarrow D_{k}(y)$ (and prover knows K)
- $q=a / b \longleftrightarrow \rightarrow q \cdot b=a$ (if the inverse exists)
- what if $\mathrm{a}=\mathrm{b}=0$? then q is unconstrained (often, but not necessarily, a design error).

Relative costs are very different from outside computation

- outside: $\mathrm{I} \sim=100 \mathrm{M}$, inside: $\mathrm{I}=\mathrm{M}$
- outside: AND $<0.0001 \mathrm{M}$, inside: AND $=\mathrm{M}$
- outside: is_bool $\sim=0$, inside: is_bool = M :-(
- inside: $\mathrm{m}=0, \mathrm{a}=0$
- \Rightarrow reevaluate performance trade-offs
- Examples:
-- favours asymmetric crypto relative to symmetric
-- more generally, favours algebraic crypto in F relative to "bit twiddling", because
treating single bits as F elements is inefficient
-- elliptic curve arithmetic: favours affine coordinates, not projective
-- fixed-base mult gets even faster relative to variable-base (more generally:
specializing for constants works well)
-- some things don't change: birationally equivalent twisted-Edwards/Montgomery curves still rock
- Concrete examples:

BLAKE2s 21136 M, SHA-256 compression ~27534 M
Pedersen hash (Bit[510] \rightarrow F w/ Sapling optimizations) 1369 M
MiMC (255-bit F[2] \rightarrow F) 640 M

- Jubjub Montgomery scalar mult: fixed-base 506 M, variable-base 2249 M. https://github.com/zcash/zcash/issues/2230\#issuecomment-361063268
- Not all of these scalar mult optimizations are used in Sapling due to complexity (fixed base is used in Pedersen hashes)

Deep dive: elliptic curve arithmetic

- Picture of Montgomery curve over ${ }^{R}$ (for intuition only)
- Will focus on Montgomery incomplete addition here (because only 3 constraints)
- Curve equation: $\mathrm{y}_{2}=\mathrm{x}_{3}-40962 . \mathrm{x}_{2}+\mathrm{x}$
- Incomplete addition:
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)+\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$
$\lambda=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$
$x_{3}=\lambda_{2}-40962-x_{1}-x_{2}$
$y_{3}=\left(x_{1}-x_{3}\right) \cdot \lambda-y_{1}$
- As constraints:
$\left(x_{2}-x_{1}\right) \times(\lambda)=\left(y_{2}-y_{1}\right)$
$(\lambda) x(\lambda)=\left(x_{1}+x_{2}+x_{3}+40962\right)$
$\left(x_{1}-x_{3}\right) \times(\lambda)=\left(y_{1}+y_{3}\right)$
- Look how pretty this is: symmetry of the geometric interpretation is preserved in the constraint system, no fluff
- Warning: here be dragons (incomplete addition). But we can tame them.
- Here (at least) is where we need proofs. In the Sapling spec
(https://github.com/zcash/zips/blob/master/protocol/sapling.pdf) we prove for example that we can avoid the unhandled addition cases, for points in the prime-order subgroup, by avoiding repeated indices.

Side rant

- Common wisdom about use of proofs of (conventional) program correctness -- "too hard", "not ready for prime time", "the tooling is not there", "doesn't scale to real-world programs", "too hard to maintain when program changes".
- No! DO PROOFS OR YOU WILL FAIL
- Do not whine about needing to do proofs. If you can't do them, ask a mathematician / cryptographer / appropriate expert. There is a cultural problem with viewing proofs as rocket science, don't make it worse.
- You don't necessarily need to use formal theorem provers.
- Do proofs about things that are non-obvious
-- to you, or to a reviewer
-- a lot of things are obvious because the constraint system directly matches the high-level specification.
- Typical proofs are of "this unhandled case can't occur", "these algorithms are equivalent". They will mostly stay valid, or be adapted easily, for changes in the lower-level detail of the constraint system.
- If you don't have a proof, at least have an informal argument.
- Do what I say, not what I do (there were/are missing proofs at the time we needed to commit to the Sapling MPC).

Back to elliptic curve stuff:

- Can we reduce cost of addition or doubling further? Or argue for optimality? Other curve shapes?
- Fun, accessible math!

Add this to pure math syllabuses :-)

Optimization techniques

- Find equivalent expressions of algorithms and use the one with the fewest constraints.
- If expressions are equivalent except for corner cases:
-- constrain the corner cases not to occur, or
-- (better, because no extra constraints) prove that they never occur.
- Switch between multiple representations.
- Change the higher-level protocol to avoid/mimimize use of expensive primitives.
- Find non-optimizable things first. Try to reuse values that are unavoidably needed.
- Use algebraic rearrangement to find common subexpressions / make the remaining computations linear.
- Linear expressions are (almost) free. If you are left with linear constraints, remove them by substituting into uses.
-- Ideally, your proving library API / DSL should make this easy.
- Merge to do two things at once Example: merging with boolean constraints in constant comparisons.
- Specialize for constants

Example: lookup from a constant window table in fixed-base scalar mult

- Use nondeterminism

Examples: proving that a value is a square, or non-zero.

- We have concentrated on minimizing number of constraints, but there is also a cost to computing the witness. This can often be optimized by combining operations.
- N -ary operations can often be made less than N times as expensive as 2 -ary.
- Trade operations inside the circuit for operations outside.
- Booleans are (typically) represented as F elements and you can do non-boolean arithmetic on them.
- The most efficient operations are those you can remove.

Poly-F

- Carter-Wegman MAC, like Poly1305, but for F.
- No need for Poly1305 performance hacks.
- Poly1305 is pretty efficient in a circuit, Poly-F is super efficient
- 1 M per F-sized block, plus a cipher (e.g. MiMC 640 M).

The crypto landscape
Protocols
EC-based primitives (hashes, commitments, key exchange)
Scalar multiplication (fixed, variable, multiscalar)
Curve arithmetic
Algebraic primitives (MiMC, Poly-F, ...)
Boring crypto (BLAKE2s, AES, Poly1305, ChaCha20)
Bit-twiddling tricks
Not crypto, but worth optimizing (comparisons, n-ary boolean ops).
What do we know how to do efficiently (and already trust)?

- One-way function (EC scalar mult)
- Key exchange (EC)
- CRH (e.g. Pedersen hash)
- Commitment (e.g. Pedersen commitment)

What could we do efficiently given a cheap PRF or "hash hammer"?

- Useful constructions:

PRP \rightarrow PRF (switching lemma)
PRF \rightarrow PRP (e.g. Feistel)
big enough $\operatorname{PRP} \rightarrow \mathrm{CRH}$ or hash hammer (fix key and truncate; sponge; other hashing modes)
PRF + MAC \rightarrow AEAD

- Signatures (e.g. Schnorr variants need a hash hammer)

Hard but feasible for some applications

- Pairing-based crypto (useful for recursive proof validation)

What can't be done efficiently for now?

- Bignum arithmetic not over F, and public key schemes dependent on it.

Rerandomized signatures

- Basic idea: sign with a randomized private key rsk for pubkey rk.

Publish (sig, rk, proof), where the proof statement is "given rk : PubKey, I know (alpha : Randomizer, ak : PubKey) such that rk is a randomization using alpha of ak (and ak is the right key)"

- The signer can delegate to a prover who doesn't need the original key ask. The signer must know it because they know rsk and gave the prover alpha, and the randomization is reversible.
- Used in Sapling for spend authorization
-- e.g. allowing spends to be authorized by a hardware wallet that can't make (or validate) proofs.
- Signature schemes are specialized zk proofs.
- More generally: use a combination of a zk-SNARK and some kind of special-purpose zk proof.

Opinionated advice:

- Avoid 90s crypto
-- hashes before SHA-256
-- ciphers before AES
They tend to be inefficient, particularly so in a circuit, even before considering security.
- Many standardized algorithms incur expense that is unnecessary for the small fixed input sizes typically used in circuits
-- e.g. can use BLAKE2s on a single block directly as a PRF, no need for HMAC/HKDF
-- check with a cryptographer if you are not one.
- Scour the cryptographic literature for cheaper primitives (maybe discarded because they weren't competitive in outside computation).
- Use personalization. It's typically free or very cheap, and prevents some chosen-protocol and replay attacks.
- Minimize the primitives used. Circuit programming is difficult and the fewer distinct primitives, the less chance of mistakes and the easier review will be.
- But don't be afraid to specialize if it really helps performance.
- Include redundant checks if they simplify the security analysis and are cheap enough.
- Don't spend time optimizing stuff that makes little difference to overall performance.
"Premature optimization is the root of all evil" still applies.
- Set a well-defined "good enough" criterion and stick to it.
- If you don't have imposter syndrome about designing zk circuits in 2018, you're probably doing something wrong.

