
Daira Hopwood
@feministPLT <daira@z.cash>
@daira on chat.zcashcommunity.com
Zcon0, Montreal, 27 June 2018

Layering of a proof system

Statements

● What are you trying to prove?
-- For given x, I know a witness w, such that P(x, w).

● Always use types
-- For given x : X, I know a witness w : W, such that P(x, w).

● Types allow the proving library API or DSL to catch as many low-level mistakes as
possible.

● Examples
-- For given h : Byte[32], I know w : Byte[64], such that
BLAKE2s(“Zcon0_ex”, w) = h.
-- For given Merkle tree root rt : Hash, I know a leaf and path (leaf : Hash, path :
Hash[Depth], pos : Nat) in the tree rooted at rt
-- For given pk : Point, I know sk : Scalar such that [sk] G = pk.

● Statements are composable while hiding intermediates
-- E.g. For given rt : Hash, I know (w : Preimage, leaf : Hash, path : Hash[Depth], pos
: Nat) such that H(w) = leaf and (leaf, path, pos) is in the tree rooted at rt.

● The proving system is a black box (nearly). You can design statements (almost)
independently of knowing how it works.

Ok, but how do we express statements?

● For this session: Rank 1 Constraint Systems.
● Applies to PHGR13, Groth16, Bulletproofs, bunch of others. Reusable knowledge.
● Set a finite field F. All finite fields are GF(p​m​). For this talk, we focus on F = GF(p).

-- GF(2​m​) is underexplored.
● We have a set of variables ​x​ : ​F​, ​w​ : ​F​. The R1CS is defined by constraints ​(A) x (B)

= (C)​ where A, B, C are linear combinations a​0​.u​0​ + a​1​.u​1​ + …
● This is complete for bounded statements.
● How do we express a given statement ​efficiently​?
● How do we design statements that we can express more efficiently?

Arithmetic circuit
 v ← don’t need this (for now)
 R1CS
 v ← somebody else’s problem
 QAP…

● By designing at the R1CS level, we expose the main determinant of proving
efficiency: number of constraints.

● R1CS programming is low-level, but ​not​ like assembler -- more like an esoteric
language.

● Graph of proving time vs circuit size [thanks to @str4d]: ~linear with sharp steps at
powers of two.

● Verification time for SNARKs has some dependence on instance size, but can use

hashing trick, so effectively O(1).

Circuits are ​constraint​ programs

● y = x​2​ ←→ x = +/- sqrt(y) (if it exists)
● y = H(x) ←→ x is an H-preimage of y (and prover knows it)
● y = E​K​(x) ←→ D​K​(y) (and prover knows K)
● q = a/b ←→ q.b = a (if the inverse exists)
● what if a = b = 0? then q is ​unconstrained​ (often, but not necessarily, a design error).

Relative costs are very different from outside computation

● outside: I ~= 100 M, inside: I = M
● outside: AND < 0.0001 M, inside: AND = M
● outside: is_bool ~= 0, inside: is_bool = M :-(
● inside: m = 0, a = 0
● ⇒ reevaluate performance trade-offs
● Examples:

-- favours asymmetric crypto relative to symmetric
-- more generally, favours algebraic crypto in F relative to “bit twiddling”, because
treating single bits as F elements is inefficient
-- elliptic curve arithmetic: favours affine coordinates, not projective
-- fixed-base mult gets even faster relative to variable-base (more generally:
specializing for constants works well)

-- some things don’t change: birationally equivalent twisted-Edwards/Montgomery
curves still rock

● Concrete examples:
BLAKE2s 21136 M, SHA-256 compression ~27534 M
Pedersen hash (Bit[510] → F w/ Sapling optimizations) 1369 M
MiMC (255-bit F[2] → F) 640 M

● Jubjub Montgomery scalar mult: fixed-base 506 M, variable-base 2249 M.
https://github.com/zcash/zcash/issues/2230#issuecomment-361063268

● Not all of these scalar mult optimizations are used in Sapling due to complexity (fixed
base is used in Pedersen hashes)

Deep dive: elliptic curve arithmetic

● Picture of Montgomery curve over ℝ (for intuition only)
● Will focus on Montgomery incomplete addition here (because only 3 constraints)
● Curve equation: y​2​ = x​3​ - 40962.x​2​ + x
● Incomplete addition:

(x​1​, y​1​) + (x​2​, y​2​) = (x​3​, y​3​)

λ = (y​2​ - y​1​)/(x​2​ - x​1​)
x​3​ = λ​2​ - 40962 - x​1​ - x​2

y​3​ = (x​1​ - x​3​).λ - y​1

● As constraints:

(x​2​ - x​1​) x (λ) = (y​2​ - y​1​)
(λ) x (λ) = (x​1​ + x​2​ + x​3​ + 40962)
(x​1​ - x​3​) x (λ) = (y​1​ + y​3​)

● Look how pretty this is: symmetry of the geometric interpretation is preserved in the
constraint system, no fluff

● Warning: here be dragons (​incomplete​ addition). But we can tame them.
● Here (at least) is where we need proofs. In the Sapling spec

(​https://github.com/zcash/zips/blob/master/protocol/sapling.pdf​) we prove for example
that we can avoid the unhandled addition cases, for points in the prime-order
subgroup, by avoiding repeated indices.

Side rant

● Common wisdom about use of proofs of (conventional) program correctness -- “too
hard”, “not ready for prime time”, “the tooling is not there”, “doesn’t scale to real-world
programs”, “too hard to maintain when program changes”.

● No! ​DO PROOFS OR YOU WILL FAIL
● Do not whine about needing to do proofs. If you can’t do them, ask a mathematician /

cryptographer / appropriate expert. There is a cultural problem with viewing proofs as
rocket science, don’t make it worse.

● You don’t necessarily need to use formal theorem provers.
● Do proofs about things that are non-obvious

-- to you, or to a reviewer

https://github.com/zcash/zcash/issues/2230#issuecomment-361063268
https://github.com/zcash/zips/blob/master/protocol/sapling.pdf

-- a lot of things are obvious because the constraint system directly matches the
high-level specification.

● Typical proofs are of “this unhandled case can’t occur”, “these algorithms are
equivalent”. They will mostly stay valid, or be adapted easily, for changes in the
lower-level detail of the constraint system.

● If you don’t have a proof, at least have an informal argument.
● Do what I say, not what I do (there were/are missing proofs at the time we needed to

commit to the Sapling MPC).

Back to elliptic curve stuff:

● Can we reduce cost of addition or doubling further? Or argue for optimality? Other
curve shapes?

● Fun, accessible math!
Add this to pure math syllabuses :-)

Optimization techniques

● Find equivalent expressions of algorithms and use the one with the fewest
constraints.

● If expressions are equivalent except for corner cases:
-- constrain the corner cases not to occur, or
-- (better, because no extra constraints) prove that they never occur.

● Switch between multiple representations.
● Change the higher-level protocol to avoid/mimimize use of expensive primitives.
● Find non-optimizable things first. Try to reuse values that are unavoidably needed.
● Use algebraic rearrangement to find common subexpressions / make the remaining

computations linear.
● Linear expressions are (almost) free. If you are left with linear constraints, remove

them by substituting into uses.
-- Ideally, your proving library API / DSL should make this easy.

● Merge to do two things at once
Example: merging with boolean constraints in constant comparisons.

● Specialize for constants
Example: lookup from a constant window table in fixed-base scalar mult

● Use nondeterminism
Examples: proving that a value is a square, or non-zero.

● We have concentrated on minimizing number of constraints, but there is also a cost
to computing the witness. This can often be optimized by combining operations.

● N-ary operations can often be made less than N times as expensive as 2-ary.
● Trade operations inside the circuit for operations outside.
● Booleans are (typically) represented as F elements and you can do non-boolean

arithmetic on them.
● The most efficient operations are those you can remove.

Poly-F

● Carter-Wegman MAC, like Poly1305, but for F.
● No need for Poly1305 performance hacks.

● Poly1305 is pretty efficient in a circuit, Poly-F is super efficient
● 1 M per F-sized block, plus a cipher (e.g. MiMC 640 M).

The crypto landscape

Protocols

EC-based primitives (hashes, commitments, key exchange)

Scalar multiplication (fixed, variable, multiscalar)

Curve arithmetic

Algebraic primitives (MiMC, Poly-F, ...)

Boring crypto (BLAKE2s, AES, Poly1305, ChaCha20)

Bit-twiddling tricks

Not crypto, but worth optimizing (comparisons, n-ary boolean ops).

What do we know how to do efficiently (and already trust)?

● One-way function (EC scalar mult)
● Key exchange (EC)
● CRH (e.g. Pedersen hash)
● Commitment (e.g. Pedersen commitment)

What could we do efficiently given a cheap PRF or “hash hammer”?

● Useful constructions:
PRP → PRF (switching lemma)
PRF → PRP (e.g. Feistel)
big enough PRP → CRH or hash hammer (fix key and truncate; sponge; other
hashing modes)
PRF + MAC → AEAD

● Signatures (e.g. Schnorr variants need a hash hammer)

Hard but feasible for some applications

● Pairing-based crypto (useful for recursive proof validation)

What can’t be done efficiently for now?

● Bignum arithmetic not over F, and public key schemes dependent on it.

Rerandomized signatures

● Basic idea: sign with a randomized private key rsk for pubkey rk.

Publish (sig, rk, proof), where the proof statement is “given rk : PubKey, I know
(alpha : Randomizer, ak : PubKey) such that rk is a randomization using alpha of ak
(and ak is the right key)”

● The signer can delegate to a prover who doesn’t need the original key ask. The
signer must know it because they know rsk and gave the prover alpha, and the
randomization is reversible.

● Used in Sapling for spend authorization
-- e.g. allowing spends to be authorized by a hardware wallet that can’t make (or
validate) proofs.

● Signature schemes are specialized zk proofs.
● More generally: use a combination of a zk-SNARK and some kind of special-purpose

zk proof.

Opinionated advice:

● Avoid 90s crypto
-- hashes before SHA-256
-- ciphers before AES
They tend to be inefficient, particularly so in a circuit, even before considering
security.

● Many standardized algorithms incur expense that is unnecessary for the small fixed
input sizes typically used in circuits
-- e.g. can use BLAKE2s on a single block directly as a PRF, no need for
HMAC/HKDF
-- check with a cryptographer if you are not one.

● Scour the cryptographic literature for cheaper primitives (maybe discarded because
they weren’t competitive in outside computation).

● Use personalization. It’s typically free or very cheap, and prevents some
chosen-protocol and replay attacks.

● Minimize the primitives used. Circuit programming is difficult and the fewer distinct
primitives, the less chance of mistakes and the easier review will be.

● But don’t be afraid to specialize if it really helps performance.
● Include redundant checks if they simplify the security analysis and are cheap

enough.
● Don’t spend time optimizing stuff that makes little difference to overall performance.

“Premature optimization is the root of all evil” still applies.
● Set a well-defined “good enough” criterion and stick to it.
● If you don’t have imposter syndrome about designing zk circuits in 2018, you’re

probably doing something wrong.

