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Layering of a proof system 
 
Statements 

● What are you trying to prove? 
-- For given x, I know a witness w, such that P(x, w). 

● Always use types 
-- For given x : X, I know a witness w : W, such that P(x, w). 

● Types allow the proving library API or DSL to catch as many low-level mistakes as 
possible. 

● Examples 
-- For given h : Byte[32], I know w : Byte[64], such that  
BLAKE2s(“Zcon0_ex”, w) = h. 
-- For given Merkle tree root rt : Hash, I know a leaf and path (leaf : Hash, path : 
Hash[Depth], pos : Nat) in the tree rooted at rt 
-- For given pk : Point, I know sk : Scalar such that [sk] G = pk. 

● Statements are composable while hiding intermediates 
-- E.g. For given rt : Hash, I know (w : Preimage, leaf : Hash, path : Hash[Depth], pos 
: Nat) such that H(w) = leaf and (leaf, path, pos) is in the tree rooted at rt. 

● The proving system is a black box (nearly). You can design statements (almost) 
independently of knowing how it works. 

 
Ok, but how do we express statements? 

● For this session: Rank 1 Constraint Systems. 
● Applies to PHGR13, Groth16, Bulletproofs, bunch of others. Reusable knowledge. 
● Set a finite field F. All finite fields are GF(p​m​). For this talk, we focus on F = GF(p). 

-- GF(2​m​) is underexplored. 
● We have a set of variables ​x​ : ​F​, ​w​ : ​F​. The R1CS is defined by constraints ​(A) x (B) 

= (C)​ where A, B, C are linear combinations a​0​.u​0​ + a​1​.u​1​ + … 
● This is complete for bounded statements. 
● How do we express a given statement ​efficiently​? 
● How do we design statements that we can express more efficiently? 

 
Arithmetic circuit 
            v     ← don’t need this (for now) 
        R1CS 
            v     ← somebody else’s problem 
         QAP… 
 

● By designing at the R1CS level, we expose the main determinant of proving 
efficiency: number of constraints. 



● R1CS programming is low-level, but ​not​ like assembler -- more like an esoteric 
language. 

● Graph of proving time vs circuit size [thanks to @str4d]: ~linear with sharp steps at 
powers of two. 

 
● Verification time for SNARKs has some dependence on instance size, but can use 

hashing trick, so effectively O(1). 
 
Circuits are ​constraint​ programs 

● y = x​2​ ←→ x = +/- sqrt(y) (if it exists) 
● y = H(x) ←→ x is an H-preimage of y (and prover knows it) 
● y = E​K​(x) ←→ D​K​(y) (and prover knows K) 
● q = a/b ←→ q.b = a (if the inverse exists) 
● what if a = b = 0? then q is ​unconstrained​ (often, but not necessarily, a design error). 

 
Relative costs are very different from outside computation 

● outside: I ~= 100 M, inside: I = M 
● outside: AND < 0.0001 M, inside: AND = M 
● outside: is_bool ~= 0, inside: is_bool = M  :-( 
● inside: m = 0, a = 0 
● ⇒ reevaluate performance trade-offs 
● Examples: 

-- favours asymmetric crypto relative to symmetric 
-- more generally, favours algebraic crypto in F relative to “bit twiddling”, because 
treating single bits as F elements is inefficient 
-- elliptic curve arithmetic: favours affine coordinates, not projective 
-- fixed-base mult gets even faster relative to variable-base (more generally: 
specializing for constants works well) 



-- some things don’t change: birationally equivalent twisted-Edwards/Montgomery 
curves still rock 

● Concrete examples: 
BLAKE2s 21136 M, SHA-256 compression ~27534 M 
Pedersen hash (Bit[510] → F w/ Sapling optimizations) 1369 M 
MiMC (255-bit F[2] → F) 640 M 

● Jubjub Montgomery scalar mult: fixed-base 506 M, variable-base 2249 M. 
https://github.com/zcash/zcash/issues/2230#issuecomment-361063268 

● Not all of these scalar mult optimizations are used in Sapling due to complexity (fixed 
base is used in Pedersen hashes) 

 
Deep dive: elliptic curve arithmetic 

● Picture of Montgomery curve over ℝ (for intuition only) 
● Will focus on Montgomery incomplete addition here (because only 3 constraints) 
● Curve equation: y​2​ = x​3​ - 40962.x​2​ + x 
● Incomplete addition: 

(x​1​, y​1​) + (x​2​, y​2​) = (x​3​, y​3​) 
 
λ = (y​2​ - y​1​)/(x​2​ - x​1​) 
x​3​ = λ​2​ - 40962 - x​1​ - x​2 

y​3​ = (x​1​ - x​3​).λ - y​1 

 
● As constraints: 

(x​2​ - x​1​) x (λ) = (y​2​ - y​1​) 
(λ) x (λ) = (x​1​ + x​2​ + x​3​ + 40962) 
(x​1​ - x​3​) x (λ) = (y​1​ + y​3​) 
 

● Look how pretty this is: symmetry of the geometric interpretation is preserved in the 
constraint system, no fluff 

● Warning: here be dragons (​incomplete​ addition). But we can tame them. 
● Here (at least) is where we need proofs. In the Sapling spec 

(​https://github.com/zcash/zips/blob/master/protocol/sapling.pdf​) we prove for example 
that we can avoid the unhandled addition cases, for points in the prime-order 
subgroup, by avoiding repeated indices. 

 
Side rant 

● Common wisdom about use of proofs of (conventional) program correctness -- “too 
hard”, “not ready for prime time”, “the tooling is not there”, “doesn’t scale to real-world 
programs”, “too hard to maintain when program changes”. 

● No! ​DO PROOFS OR YOU WILL FAIL 
● Do not whine about needing to do proofs. If you can’t do them, ask a mathematician / 

cryptographer / appropriate expert. There is a cultural problem with viewing proofs as 
rocket science, don’t make it worse. 

● You don’t necessarily need to use formal theorem provers. 
● Do proofs about things that are non-obvious 

-- to you, or to a reviewer 

https://github.com/zcash/zcash/issues/2230#issuecomment-361063268
https://github.com/zcash/zips/blob/master/protocol/sapling.pdf


-- a lot of things are obvious because the constraint system directly matches the 
high-level specification. 

● Typical proofs are of “this unhandled case can’t occur”, “these algorithms are 
equivalent”. They will mostly stay valid, or be adapted easily, for changes in the 
lower-level detail of the constraint system. 

● If you don’t have a proof, at least have an informal argument. 
● Do what I say, not what I do (there were/are missing proofs at the time we needed to 

commit to the Sapling MPC). 
 
Back to elliptic curve stuff: 

● Can we reduce cost of addition or doubling further? Or argue for optimality? Other 
curve shapes? 

● Fun, accessible math! 
Add this to pure math syllabuses :-) 

 
Optimization techniques 

● Find equivalent expressions of algorithms and use the one with the fewest 
constraints. 

● If expressions are equivalent except for corner cases: 
-- constrain the corner cases not to occur, or 
-- (better, because no extra constraints) prove that they never occur. 

● Switch between multiple representations. 
● Change the higher-level protocol to avoid/mimimize use of expensive primitives. 
● Find non-optimizable things first. Try to reuse values that are unavoidably needed. 
● Use algebraic rearrangement to find common subexpressions / make the remaining 

computations linear. 
● Linear expressions are (almost) free. If you are left with linear constraints, remove 

them by substituting into uses. 
-- Ideally, your proving library API / DSL should make this easy. 

● Merge to do two things at once 
Example: merging with boolean constraints in constant comparisons. 

● Specialize for constants 
Example: lookup from a constant window table in fixed-base scalar mult 

● Use nondeterminism 
Examples: proving that a value is a square, or non-zero. 

● We have concentrated on minimizing number of constraints, but there is also a cost 
to computing the witness. This can often be optimized by combining operations. 

● N-ary operations can often be made less than N times as expensive as 2-ary. 
● Trade operations inside the circuit for operations outside. 
● Booleans are (typically) represented as F elements and you can do non-boolean 

arithmetic on them. 
● The most efficient operations are those you can remove. 

 
Poly-F 

● Carter-Wegman MAC, like Poly1305, but for F. 
● No need for Poly1305 performance hacks. 



● Poly1305 is pretty efficient in a circuit, Poly-F is super efficient 
● 1 M per F-sized block, plus a cipher (e.g. MiMC 640 M). 

 
The crypto landscape 
 
Protocols 
------------------------------- 
EC-based primitives (hashes, commitments, key exchange) 
------------------------------- 
Scalar multiplication (fixed, variable, multiscalar) 
------------------------------- 
Curve arithmetic 
 
Algebraic primitives (MiMC, Poly-F, ...) 
 
Boring crypto (BLAKE2s, AES, Poly1305, ChaCha20) 
------------------------------- 
Bit-twiddling tricks 
 
Not crypto, but worth optimizing (comparisons, n-ary boolean ops). 
 
What do we know how to do efficiently (and already trust)? 

● One-way function (EC scalar mult) 
● Key exchange (EC) 
● CRH (e.g. Pedersen hash) 
● Commitment (e.g. Pedersen commitment) 

 
What could we do efficiently given a cheap PRF or “hash hammer”? 

● Useful constructions: 
PRP → PRF (switching lemma) 
PRF → PRP (e.g. Feistel) 
big enough PRP → CRH or hash hammer (fix key and truncate; sponge; other 
hashing modes) 
PRF + MAC → AEAD 

● Signatures (e.g. Schnorr variants need a hash hammer) 
 
Hard but feasible for some applications 

● Pairing-based crypto (useful for recursive proof validation) 
 
What can’t be done efficiently for now? 

● Bignum arithmetic not over F, and public key schemes dependent on it. 
 
Rerandomized signatures 

● Basic idea: sign with a randomized private key rsk for pubkey rk. 



Publish (sig, rk, proof), where the proof statement is “given rk : PubKey, I know 
(alpha : Randomizer, ak : PubKey) such that rk is a randomization using alpha of ak 
(and ak is the right key)” 

● The signer can delegate to a prover who doesn’t need the original key ask. The 
signer must know it because they know rsk and gave the prover alpha, and the 
randomization is reversible. 

● Used in Sapling for spend authorization 
-- e.g. allowing spends to be authorized by a hardware wallet that can’t make (or 
validate) proofs. 

● Signature schemes are specialized zk proofs. 
● More generally: use a combination of a zk-SNARK and some kind of special-purpose 

zk proof. 
 
Opinionated advice: 

● Avoid 90s crypto 
-- hashes before SHA-256 
-- ciphers before AES 
They tend to be inefficient, particularly so in a circuit, even before considering 
security. 

● Many standardized algorithms incur expense that is unnecessary for the small fixed 
input sizes typically used in circuits 
-- e.g. can use BLAKE2s on a single block directly as a PRF, no need for 
HMAC/HKDF 
-- check with a cryptographer if you are not one. 

● Scour the cryptographic literature for cheaper primitives (maybe discarded because 
they weren’t competitive in outside computation). 

● Use personalization. It’s typically free or very cheap, and prevents some 
chosen-protocol and replay attacks. 

● Minimize the primitives used. Circuit programming is difficult and the fewer distinct 
primitives, the less chance of mistakes and the easier review will be. 

● But don’t be afraid to specialize if it really helps performance. 
● Include redundant checks if they simplify the security analysis and are cheap 

enough. 
● Don’t spend time optimizing stuff that makes little difference to overall performance. 

“Premature optimization is the root of all evil” still applies. 
● Set a well-defined “good enough” criterion and stick to it. 
● If you don’t have imposter syndrome about designing zk circuits in 2018, you’re 

probably doing something wrong. 


