Daira Hopwood

@feministPLT <daira@z.cash>
@daira on chat.zcashcommunity.com
Zcon0, Montreal, 27 June 2018

Layering of a proof system

Statements

e What are you trying to prove?
-- For given x, | know a witness w, such that P(x, w).

e Always use types
-- For given x : X, | know a witness w : W, such that P(x, w).

e Types allow the proving library APl or DSL to catch as many low-level mistakes as
possible.

e Examples
-- For given h : Byte[32], | know w : Byte[64], such that
BLAKE2s(“Zcon0_ex”, w) = h.
-- For given Merkle tree root rt : Hash, | know a leaf and path (leaf : Hash, path :
Hash[Depth], pos : Nat) in the tree rooted at rt
-- For given pk : Point, | know sk : Scalar such that [sk] G = pk.

e Statements are composable while hiding intermediates
-- E.g. For given rt : Hash, | know (w : Preimage, leaf : Hash, path : Hash[Depth], pos
: Nat) such that H(w) = leaf and (leaf, path, pos) is in the tree rooted at rt.

e The proving system is a black box (nearly). You can design statements (almost)
independently of knowing how it works.

Ok, but how do we express statements?

e For this session: Rank 1 Constraint Systems.

e Applies to PHGR13, Groth16, Bulletproofs, bunch of others. Reusable knowledge.

e Set afinite field F. All finite fields are GF(p™). For this talk, we focus on F = GF(p).
-- GF(2™) is underexplored.

e We have a set of variables x : E, w : E. The R1CS is defined by constraints (A) x (B)
= (C) where A, B, C are linear combinations a,.u, + a,.u; + ...
This is complete for bounded statements.
How do we express a given statement efficiently?
How do we design statements that we can express more efficiently?

Arithmetic circuit
v« don’t need this (for now)
R1CS
vV <« somebody else’s problem
QAP...

e By designing at the R1CS level, we expose the main determinant of proving
efficiency: number of constraints.

e R1CS programming is low-level, but not like assembler -- more like an esoteric
language.

e Graph of proving time vs circuit size [thanks to @str4d]: ~linear with sharp steps at
powers of two.

Sapling input circuit performance

Proving time (s)

T T T L] T T T T T T T T T T T T T T T T T T LI T
123456 7 8 91011121314 1516 17 18 1920 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
Tree depth (2°N)

e Verification time for SNARKs has some dependence on instance size, but can use
hashing trick, so effectively O(1).

Circuits are constraint programs

y = x? «—— x = +/- sqrt(y) (if it exists)

y = H(x) «<—— x is an H-preimage of y (and prover knows it)

y = E((X) «<—— D(y) (and prover knows K)

g = a/lb —— q.b = a (if the inverse exists)

what if a = b = 0? then q is unconstrained (often, but not necessarily, a design error).

Relative costs are very different from outside computation

outside: | ~= 100 M, inside: | = M

outside: AND < 0.0001 M, inside: AND = M

outside: is_bool ~= 0, inside: is_bool = M :-(

inside:m=0,a=0

= reevaluate performance trade-offs

Examples:

-- favours asymmetric crypto relative to symmetric

-- more generally, favours algebraic crypto in F relative to “bit twiddling”, because
treating single bits as F elements is inefficient

-- elliptic curve arithmetic: favours affine coordinates, not projective

-- fixed-base mult gets even faster relative to variable-base (more generally:
specializing for constants works well)

-- some things don’t change: birationally equivalent twisted-Edwards/Montgomery
curves still rock

Concrete examples:

BLAKEZ2s 21136 M, SHA-256 compression ~27534 M

Pedersen hash (Bit[510] — F w/ Sapling optimizations) 1369 M

MiMC (255-bit F[2] — F) 640 M

Jubjub Montgomery scalar mult: fixed-base 506 M, variable-base 2249 M.
https://github.com/zcash/zcash/issues/2230#issuecomment-361063268

Not all of these scalar mult optimizations are used in Sapling due to complexity (fixed
base is used in Pedersen hashes)

Deep dive: elliptic curve arithmetic

Picture of Montgomery curve over R (for intuition only)

Will focus on Montgomery incomplete addition here (because only 3 constraints)
Curve equation: y, = X, - 40962.x, + X

Incomplete addition:

(X45 Yq) + (Xp ¥5) = (X, Ys3)

A=y, - Y%, - Xy)
X3 = A, -40962 - x, - X,

Y3 = (X4 - X3)-A -y,

As constraints:

(X = %X) X (N) = (¥, -¥y)

(A) x (N) = (x, + x, + x5 + 40962)
(X3 = X5) X (A) = (y, +Ys)

Look how pretty this is: symmetry of the geometric interpretation is preserved in the
constraint system, no fluff

Warning: here be dragons (incomplete addition). But we can tame them.

Here (at least) is where we need proofs. In the Sapling spec
(https://github.com/zcash/zips/blob/master/protocol/sapling.pdf) we prove for example
that we can avoid the unhandled addition cases, for points in the prime-order
subgroup, by avoiding repeated indices.

Side rant

Common wisdom about use of proofs of (conventional) program correctness -- “too
hard”, “not ready for prime time”, “the tooling is not there”, “doesn’t scale to real-world
programs”, “too hard to maintain when program changes”.

No! DO PROOFS OR YOU WILL FAIL

Do not whine about needing to do proofs. If you can’t do them, ask a mathematician /
cryptographer / appropriate expert. There is a cultural problem with viewing proofs as
rocket science, don’t make it worse.

You don’t necessarily need to use formal theorem provers.

Do proofs about things that are non-obvious

-- to you, or to a reviewer

https://github.com/zcash/zcash/issues/2230#issuecomment-361063268
https://github.com/zcash/zips/blob/master/protocol/sapling.pdf

-- a lot of things are obvious because the constraint system directly matches the
high-level specification.

Typical proofs are of “this unhandled case can’t occur”, “these algorithms are
equivalent”. They will mostly stay valid, or be adapted easily, for changes in the
lower-level detail of the constraint system.

If you don’t have a proof, at least have an informal argument.

Do what | say, not what | do (there were/are missing proofs at the time we needed to
commit to the Sapling MPC).

Back to elliptic curve stuff:

Can we reduce cost of addition or doubling further? Or argue for optimality? Other
curve shapes?

Fun, accessible math!

Add this to pure math syllabuses :-)

Optimization techniques

Poly-F
[]

Find equivalent expressions of algorithms and use the one with the fewest
constraints.

If expressions are equivalent except for corner cases:

-- constrain the corner cases not to occur, or

-- (better, because no extra constraints) prove that they never occur.

Switch between multiple representations.

Change the higher-level protocol to avoid/mimimize use of expensive primitives.
Find non-optimizable things first. Try to reuse values that are unavoidably needed.
Use algebraic rearrangement to find common subexpressions / make the remaining
computations linear.

Linear expressions are (almost) free. If you are left with linear constraints, remove
them by substituting into uses.

-- Ideally, your proving library API / DSL should make this easy.

Merge to do two things at once

Example: merging with boolean constraints in constant comparisons.

Specialize for constants

Example: lookup from a constant window table in fixed-base scalar mult

Use nondeterminism

Examples: proving that a value is a square, or non-zero.

We have concentrated on minimizing number of constraints, but there is also a cost
to computing the witness. This can often be optimized by combining operations.
N-ary operations can often be made less than N times as expensive as 2-ary.
Trade operations inside the circuit for operations outside.

Booleans are (typically) represented as F elements and you can do non-boolean
arithmetic on them.

The most efficient operations are those you can remove.

Carter-Wegman MAC, like Poly1305, but for F.
No need for Poly1305 performance hacks.

e Poly1305 is pretty efficient in a circuit, Poly-F is super efficient
e 1 M per F-sized block, plus a cipher (e.g. MiMC 640 M).

The crypto landscape

Protocols

EC-based primitives (hashes, commitments, key exchange)

Scalar multiplication (fixed, variable, multiscalar)

Curve arithmetic
Algebraic primitives (MiMC, Poly-F, ...)

Boring crypto (BLAKEZ2s, AES, Poly1305, ChaCha20)

Bit-twiddling tricks
Not crypto, but worth optimizing (comparisons, n-ary boolean ops).

What do we know how to do efficiently (and already trust)?
e One-way function (EC scalar mult)
e Key exchange (EC)
e CRH (e.g. Pedersen hash)
e Commitment (e.g. Pedersen commitment)

What could we do efficiently given a cheap PRF or “hash hammer”?

e Useful constructions:
PRP — PRF (switching lemma)
PRF — PRP (e.g. Feistel)
big enough PRP — CRH or hash hammer (fix key and truncate; sponge; other
hashing modes)
PRF + MAC — AEAD

e Signatures (e.g. Schnorr variants need a hash hammer)

Hard but feasible for some applications
e Pairing-based crypto (useful for recursive proof validation)

What can’t be done efficiently for now?
e Bignum arithmetic not over F, and public key schemes dependent on it.

Rerandomized signatures
e Basic idea: sign with a randomized private key rsk for pubkey rk.

Publish (sig, rk, proof), where the proof statement is “given rk : PubKey, | know
(alpha : Randomizer, ak : PubKey) such that rk is a randomization using alpha of ak
(and ak is the right key)”

The signer can delegate to a prover who doesn’t need the original key ask. The
signer must know it because they know rsk and gave the prover alpha, and the
randomization is reversible.

Used in Sapling for spend authorization

-- e.g. allowing spends to be authorized by a hardware wallet that can’t make (or
validate) proofs.

Signature schemes are specialized zk proofs.

More generally: use a combination of a zk-SNARK and some kind of special-purpose
zk proof.

Opinionated advice:

Avoid 90s crypto

-- hashes before SHA-256

-- ciphers before AES

They tend to be inefficient, particularly so in a circuit, even before considering
security.

Many standardized algorithms incur expense that is unnecessary for the small fixed
input sizes typically used in circuits

-- e.g. can use BLAKEZ2s on a single block directly as a PRF, no need for
HMAC/HKDF

-- check with a cryptographer if you are not one.

Scour the cryptographic literature for cheaper primitives (maybe discarded because
they weren’t competitive in outside computation).

Use personalization. It’s typically free or very cheap, and prevents some
chosen-protocol and replay attacks.

Minimize the primitives used. Circuit programming is difficult and the fewer distinct
primitives, the less chance of mistakes and the easier review will be.

But don’t be afraid to specialize if it really helps performance.

Include redundant checks if they simplify the security analysis and are cheap
enough.

Don’t spend time optimizing stuff that makes little difference to overall performance.
“Premature optimization is the root of all evil” still applies.

Set a well-defined “good enough” criterion and stick to it.

If you don’t have imposter syndrome about designing zk circuits in 2018, you're
probably doing something wrong.

