zebra/zebra-chain/src/note_encryption/sapling.rs

190 lines
5.0 KiB
Rust
Raw Normal View History

use std::{fmt, io};
#[cfg(test)]
use proptest::{arbitrary::Arbitrary, collection::vec, prelude::*};
use crate::serialization::{SerializationError, ZcashDeserialize, ZcashSerialize};
2020-02-22 15:22:28 -08:00
use super::*;
/// A _Diversifier_, an 11 byte value used to randomize the
/// recipient's final public shielded payment address to create a
/// _diversified payment address_.
///
/// When used, this value is mapped to an affine JubJub group element.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Diversifier(pub [u8; 11]);
pub struct Note {
diversifier: Diversifier,
2020-02-22 18:40:48 -08:00
// TODO: refine as a type, derived from a scalar mult of the
// diversifier as a jubjub group element and the incoming view key
// scalar.
transmission_key: [u8; 32],
value: u64,
note_commitment_randomness: NoteCommitmentRandomness,
}
2020-02-22 15:22:28 -08:00
/// The decrypted form of encrypted Sapling notes on the blockchain.
pub struct NotePlaintext {
diversifier: Diversifier,
value: u64,
// TODO: refine as jub-jub appropriate in the base field.
2020-02-22 18:40:48 -08:00
note_commitment_randomness: NoteCommitmentRandomness,
2020-02-22 15:22:28 -08:00
memo: memo::Memo,
}
/// A ciphertext component for encrypted output notes.
pub struct EncryptedCiphertext(pub [u8; 580]);
impl fmt::Debug for EncryptedCiphertext {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("EncryptedCiphertext")
.field(&hex::encode(&self.0[..]))
.finish()
}
}
// These impls all only exist because of array length restrictions.
impl Copy for EncryptedCiphertext {}
impl Clone for EncryptedCiphertext {
fn clone(&self) -> Self {
let mut bytes = [0; 580];
bytes[..].copy_from_slice(&self.0[..]);
Self(bytes)
}
}
impl PartialEq for EncryptedCiphertext {
fn eq(&self, other: &Self) -> bool {
self.0[..] == other.0[..]
}
}
impl Eq for EncryptedCiphertext {}
impl ZcashSerialize for EncryptedCiphertext {
fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
writer.write_all(&self.0[..])?;
Ok(())
}
}
impl ZcashDeserialize for EncryptedCiphertext {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
let mut bytes = [0; 580];
reader.read_exact(&mut bytes[..])?;
Ok(Self(bytes))
}
}
#[cfg(test)]
impl Arbitrary for EncryptedCiphertext {
type Parameters = ();
fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
(vec(any::<u8>(), 580))
.prop_map(|v| {
let mut bytes = [0; 580];
bytes.copy_from_slice(v.as_slice());
return Self(bytes);
})
.boxed()
}
type Strategy = BoxedStrategy<Self>;
}
/// A ciphertext component for encrypted output notes.
pub struct OutCiphertext(pub [u8; 80]);
impl fmt::Debug for OutCiphertext {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("OutCiphertext")
.field(&hex::encode(&self.0[..]))
.finish()
}
}
// These impls all only exist because of array length restrictions.
impl Copy for OutCiphertext {}
impl Clone for OutCiphertext {
fn clone(&self) -> Self {
let mut bytes = [0; 80];
bytes[..].copy_from_slice(&self.0[..]);
Self(bytes)
}
}
impl PartialEq for OutCiphertext {
fn eq(&self, other: &Self) -> bool {
self.0[..] == other.0[..]
}
}
impl Eq for OutCiphertext {}
impl ZcashSerialize for OutCiphertext {
fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
writer.write_all(&self.0[..])?;
Ok(())
}
}
impl ZcashDeserialize for OutCiphertext {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
let mut bytes = [0; 80];
reader.read_exact(&mut bytes[..])?;
Ok(Self(bytes))
}
}
#[cfg(test)]
impl Arbitrary for OutCiphertext {
type Parameters = ();
fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
(vec(any::<u8>(), 80))
.prop_map(|v| {
let mut bytes = [0; 80];
bytes.copy_from_slice(v.as_slice());
return Self(bytes);
})
.boxed()
}
type Strategy = BoxedStrategy<Self>;
}
#[cfg(test)]
proptest! {
#[test]
fn encrypted_ciphertext_roundtrip(ec in any::<EncryptedCiphertext>()) {
let mut data = Vec::new();
ec.zcash_serialize(&mut data).expect("EncryptedCiphertext should serialize");
let ec2 = EncryptedCiphertext::zcash_deserialize(&data[..]).expect("randomized EncryptedCiphertext should deserialize");
prop_assert_eq![ec, ec2];
}
#[test]
fn out_ciphertext_roundtrip(oc in any::<OutCiphertext>()) {
let mut data = Vec::new();
oc.zcash_serialize(&mut data).expect("OutCiphertext should serialize");
let oc2 = OutCiphertext::zcash_deserialize(&data[..]).expect("randomized OutCiphertext should deserialize");
prop_assert_eq![oc, oc2];
}
}