zebra/zebra-state/src/sled_state.rs

231 lines
8.9 KiB
Rust
Raw Normal View History

//! The primary implementation of the `zebra_state::Service` built upon sled
use std::{collections::HashMap, convert::TryInto, future::Future, sync::Arc};
use tracing::trace;
use zebra_chain::serialization::{ZcashDeserialize, ZcashSerialize};
use zebra_chain::{
block::{self, Block},
parameters::Network,
};
use crate::{BoxError, Config, HashOrHeight, QueuedBlock};
2020-09-10 14:16:39 -07:00
/// The finalized part of the chain state, stored in sled.
///
/// This structure has two categories of methods:
///
/// - *synchronous* methods that perform writes to the sled state;
/// - *asynchronous* methods that perform reads.
///
/// For more on this distinction, see RFC5. The synchronous methods are
/// implemented as ordinary methods on the [`FinalizedState`]. The asynchronous
2020-09-10 14:16:39 -07:00
/// methods are not implemented using `async fn`, but using normal methods that
/// return `impl Future<Output = ...>`. This allows them to move data (e.g.,
/// clones of handles for [`sled::Tree`]s) into the futures they return.
///
/// This means that the returned futures have a `'static` lifetime and don't
/// borrow any resources from the [`FinalizedState`], and the actual database work is
2020-09-10 14:16:39 -07:00
/// performed asynchronously when the returned future is polled, not while it is
/// created. This is analogous to the way [`tower::Service::call`] works.
pub struct FinalizedState {
/// Queued blocks that arrived out of order, indexed by their parent block hash.
queued_by_prev_hash: HashMap<block::Hash, QueuedBlock>,
hash_by_height: sled::Tree,
height_by_hash: sled::Tree,
block_by_height: sled::Tree,
// tx_by_hash: sled::Tree,
// utxo_by_outpoint: sled::Tree,
// sprout_nullifiers: sled::Tree,
// sapling_nullifiers: sled::Tree,
// sprout_anchors: sled::Tree,
// sapling_anchors: sled::Tree,
}
impl FinalizedState {
pub fn new(config: &Config, network: Network) -> Self {
let db = config.sled_config(network).open().unwrap();
Self {
queued_by_prev_hash: HashMap::new(),
hash_by_height: db.open_tree(b"hash_by_height").unwrap(),
height_by_hash: db.open_tree(b"height_by_hash").unwrap(),
block_by_height: db.open_tree(b"block_by_height").unwrap(),
// tx_by_hash: db.open_tree(b"tx_by_hash").unwrap(),
// utxo_by_outpoint: db.open_tree(b"utxo_by_outpoint").unwrap(),
// sprout_nullifiers: db.open_tree(b"sprout_nullifiers").unwrap(),
// sapling_nullifiers: db.open_tree(b"sapling_nullifiers").unwrap(),
}
}
/// Queue a finalized block to be committed to the state.
2020-09-10 14:16:39 -07:00
///
/// After queueing a finalized block, this method checks whether the newly
/// queued block (and any of its descendants) can be committed to the state.
pub fn queue_and_commit_finalized_blocks(&mut self, queued_block: QueuedBlock) {
let prev_hash = queued_block.block.header.previous_block_hash;
self.queued_by_prev_hash.insert(prev_hash, queued_block);
while let Some(queued_block) = self.queued_by_prev_hash.remove(&self.finalized_tip_hash()) {
self.commit_finalized(queued_block)
}
}
/// Returns the hash of the current finalized tip block.
pub fn finalized_tip_hash(&self) -> block::Hash {
read_tip(&self.hash_by_height)
.expect("inability to look up tip is unrecoverable")
.map(|(_, hash)| hash)
// if the state is empty, return the genesis previous block hash
.unwrap_or(block::Hash([0; 32]))
}
/// Returns the height of the current finalized tip block.
pub fn finalized_tip_height(&self) -> Option<block::Height> {
read_tip(&self.hash_by_height)
.expect("inability to look up tip is unrecoverable")
.map(|(height, _)| height)
}
/// Immediately commit `block` to the finalized state.
pub fn commit_finalized_direct(&mut self, block: Arc<Block>) -> Result<block::Hash, BoxError> {
use sled::Transactional;
let height = block
.coinbase_height()
.expect("finalized blocks are valid and have a coinbase height");
let height_bytes = height.0.to_be_bytes();
let hash = block.hash();
trace!(?height, "Finalized block");
(
&self.hash_by_height,
&self.height_by_hash,
&self.block_by_height,
)
.transaction(move |(hash_by_height, height_by_hash, block_by_height)| {
// TODO: do serialization above
// for some reason this wouldn't move into the closure (??)
let block_bytes = block
.zcash_serialize_to_vec()
.expect("zcash_serialize_to_vec has wrong return type");
// TODO: check highest entry of hash_by_height as in RFC
hash_by_height.insert(&height_bytes, &hash.0)?;
height_by_hash.insert(&hash.0, &height_bytes)?;
block_by_height.insert(&height_bytes, block_bytes)?;
// for some reason type inference fails here
Ok::<_, sled::transaction::ConflictableTransactionError>(hash)
})
.map_err(Into::into)
}
/// Commit a finalized block to the state.
///
/// It's the caller's responsibility to ensure that blocks are committed in
/// order. This function is called by [`queue`], which ensures order.
/// It is intentionally not exposed as part of the public API of the
/// [`FinalizedState`].
fn commit_finalized(&mut self, queued_block: QueuedBlock) {
let QueuedBlock { block, rsp_tx } = queued_block;
let result = self.commit_finalized_direct(block);
let _ = rsp_tx.send(result.map_err(Into::into));
}
// TODO: this impl works only during checkpointing, it needs to be rewritten
pub fn block_locator(&self) -> impl Future<Output = Result<Vec<block::Hash>, BoxError>> {
let hash_by_height = self.hash_by_height.clone();
let tip = self.tip();
async move {
let (tip_height, _) = match tip.await? {
Some(height) => height,
None => return Ok(Vec::new()),
};
let heights = crate::util::block_locator_heights(tip_height);
let mut hashes = Vec::with_capacity(heights.len());
for height in heights {
if let Some(bytes) = hash_by_height.get(&height.0.to_be_bytes())? {
let hash = block::Hash(bytes.as_ref().try_into().unwrap());
hashes.push(hash)
}
}
Ok(hashes)
}
}
pub fn tip(
&self,
) -> impl Future<Output = Result<Option<(block::Height, block::Hash)>, BoxError>> {
let hash_by_height = self.hash_by_height.clone();
async move { read_tip(&hash_by_height) }
}
pub fn depth(&self, hash: block::Hash) -> impl Future<Output = Result<Option<u32>, BoxError>> {
let height_by_hash = self.height_by_hash.clone();
// TODO: this impl works only during checkpointing, it needs to be rewritten
let tip = self.tip();
async move {
let height = match height_by_hash.get(&hash.0)? {
Some(bytes) => {
block::Height(u32::from_be_bytes(bytes.as_ref().try_into().unwrap()))
}
None => return Ok(None),
};
let (tip_height, _) = tip.await?.expect("tip must exist");
Ok(Some(tip_height.0 - height.0))
}
}
pub fn block(
&self,
hash_or_height: HashOrHeight,
) -> impl Future<Output = Result<Option<Arc<Block>>, BoxError>> {
let height_by_hash = self.height_by_hash.clone();
let block_by_height = self.block_by_height.clone();
async move {
let height = match hash_or_height {
HashOrHeight::Height(height) => height,
HashOrHeight::Hash(hash) => match height_by_hash.get(&hash.0)? {
Some(bytes) => {
block::Height(u32::from_be_bytes(bytes.as_ref().try_into().unwrap()))
}
None => return Ok(None),
},
};
match block_by_height.get(&height.0.to_be_bytes())? {
Some(bytes) => Ok(Some(Arc::<Block>::zcash_deserialize(bytes.as_ref())?)),
None => Ok(None),
}
}
}
}
// Split into a helper function to be called synchronously or asynchronously.
fn read_tip(hash_by_height: &sled::Tree) -> Result<Option<(block::Height, block::Hash)>, BoxError> {
Ok(hash_by_height
.iter()
.rev()
.next()
.transpose()?
.map(|(height_bytes, hash_bytes)| {
let height = block::Height(u32::from_be_bytes(
height_bytes.as_ref().try_into().unwrap(),
));
let hash = block::Hash(hash_bytes.as_ref().try_into().unwrap());
(height, hash)
}))
}