zebra/zebra-consensus/src/checkpoint/tests.rs

770 lines
24 KiB
Rust
Raw Normal View History

//! Tests for checkpoint-based block verification
use super::*;
use super::types::Progress::*;
use super::types::Target::*;
use color_eyre::eyre::{eyre, Report};
use futures::{future::TryFutureExt, stream::FuturesUnordered};
use std::{cmp::min, mem::drop, time::Duration};
use tokio::{stream::StreamExt, time::timeout};
use tower::{Service, ServiceExt};
use tracing_futures::Instrument;
use zebra_chain::serialization::ZcashDeserialize;
/// The timeout we apply to each verify future during testing.
///
/// The checkpoint verifier uses `tokio::sync::oneshot` channels as futures.
/// If the verifier doesn't send a message on the channel, any tests that
/// await the channel future will hang.
///
/// This value is set to a large value, to avoid spurious failures due to
/// high system load.
const VERIFY_TIMEOUT_SECONDS: u64 = 10;
#[tokio::test]
async fn single_item_checkpoint_list_test() -> Result<(), Report> {
single_item_checkpoint_list().await
}
#[spandoc::spandoc]
async fn single_item_checkpoint_list() -> Result<(), Report> {
zebra_test::init();
let block0 =
Arc::<Block>::zcash_deserialize(&zebra_test::vectors::BLOCK_MAINNET_GENESIS_BYTES[..])?;
let hash0 = block0.hash();
// Make a checkpoint list containing only the genesis block
let genesis_checkpoint_list: BTreeMap<BlockHeight, block::Hash> =
[(block0.coinbase_height().unwrap(), hash0)]
.iter()
.cloned()
.collect();
let mut checkpoint_verifier =
CheckpointVerifier::from_list(genesis_checkpoint_list, None).map_err(|e| eyre!(e))?;
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
BeforeGenesis
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
WaitingForBlocks
);
assert_eq!(
checkpoint_verifier.checkpoint_list.max_height(),
BlockHeight(0)
);
/// SPANDOC: Make sure the verifier service is ready
let ready_verifier_service = checkpoint_verifier
.ready_and()
.map_err(|e| eyre!(e))
.await?;
/// SPANDOC: Set up the future for block 0
let verify_future = timeout(
Duration::from_secs(VERIFY_TIMEOUT_SECONDS),
ready_verifier_service.call(block0.clone()),
);
/// SPANDOC: Wait for the response for block 0
// TODO(teor || jlusby): check error kind
let verify_response = verify_future
.map_err(|e| eyre!(e))
.await
.expect("timeout should not happen")
.expect("block should verify");
assert_eq!(verify_response, hash0);
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
FinalCheckpoint
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
FinishedVerifying
);
assert_eq!(
checkpoint_verifier.checkpoint_list.max_height(),
BlockHeight(0)
);
Ok(())
}
#[tokio::test]
async fn multi_item_checkpoint_list_test() -> Result<(), Report> {
multi_item_checkpoint_list().await
}
#[spandoc::spandoc]
async fn multi_item_checkpoint_list() -> Result<(), Report> {
zebra_test::init();
// Parse all the blocks
let mut checkpoint_data = Vec::new();
for b in &[
// This list is used as a checkpoint list, and as a list of blocks to
// verify. So it must be continuous.
&zebra_test::vectors::BLOCK_MAINNET_GENESIS_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_1_BYTES[..],
] {
let block = Arc::<Block>::zcash_deserialize(*b)?;
let hash = block.hash();
checkpoint_data.push((block.clone(), block.coinbase_height().unwrap(), hash));
}
// Make a checkpoint list containing all the blocks
let checkpoint_list: BTreeMap<BlockHeight, block::Hash> = checkpoint_data
.iter()
.map(|(_block, height, hash)| (*height, *hash))
.collect();
let mut checkpoint_verifier =
CheckpointVerifier::from_list(checkpoint_list, None).map_err(|e| eyre!(e))?;
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
BeforeGenesis
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
WaitingForBlocks
);
assert_eq!(
checkpoint_verifier.checkpoint_list.max_height(),
BlockHeight(1)
);
// Now verify each block
for (block, height, hash) in checkpoint_data {
/// SPANDOC: Make sure the verifier service is ready
let ready_verifier_service = checkpoint_verifier
.ready_and()
.map_err(|e| eyre!(e))
.await?;
/// SPANDOC: Set up the future for block {?height}
let verify_future = timeout(
Duration::from_secs(VERIFY_TIMEOUT_SECONDS),
ready_verifier_service.call(block.clone()),
);
/// SPANDOC: Wait for the response for block {?height}
// TODO(teor || jlusby): check error kind
let verify_response = verify_future
.map_err(|e| eyre!(e))
.await
.expect("timeout should not happen")
.expect("future should succeed");
assert_eq!(verify_response, hash);
if height < checkpoint_verifier.checkpoint_list.max_height() {
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
PreviousCheckpoint(height)
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
WaitingForBlocks
);
} else {
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
FinalCheckpoint
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
FinishedVerifying
);
}
assert_eq!(
checkpoint_verifier.checkpoint_list.max_height(),
BlockHeight(1)
);
}
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
FinalCheckpoint
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
FinishedVerifying
);
assert_eq!(
checkpoint_verifier.checkpoint_list.max_height(),
BlockHeight(1)
);
Ok(())
}
#[tokio::test]
async fn continuous_blockchain_test() -> Result<(), Report> {
continuous_blockchain(None).await?;
for height in 0..=10 {
continuous_blockchain(Some(BlockHeight(height))).await?;
}
Ok(())
}
/// Test a continuous blockchain, restarting verification at `restart_height`.
#[spandoc::spandoc]
async fn continuous_blockchain(restart_height: Option<BlockHeight>) -> Result<(), Report> {
zebra_test::init();
// A continuous blockchain
let mut blockchain = Vec::new();
for b in &[
&zebra_test::vectors::BLOCK_MAINNET_GENESIS_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_1_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_2_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_3_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_4_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_5_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_6_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_7_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_8_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_9_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_10_BYTES[..],
] {
let block = Arc::<Block>::zcash_deserialize(*b)?;
let hash = block.hash();
blockchain.push((block.clone(), block.coinbase_height().unwrap(), hash));
}
// Parse only some blocks as checkpoints
let mut checkpoints = Vec::new();
for b in &[
&zebra_test::vectors::BLOCK_MAINNET_GENESIS_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_5_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_9_BYTES[..],
] {
let block = Arc::<Block>::zcash_deserialize(*b)?;
let hash = block.hash();
checkpoints.push((block.clone(), block.coinbase_height().unwrap(), hash));
}
// The checkpoint list will contain only block 0, 5 and 9
let checkpoint_list: BTreeMap<BlockHeight, block::Hash> = checkpoints
.iter()
.map(|(_block, height, hash)| (*height, *hash))
.collect();
/// SPANDOC: Verify blocks, restarting at {?restart_height}
{
let initial_tip = restart_height
.map(|BlockHeight(height)| &blockchain[height as usize].0)
.cloned();
let mut checkpoint_verifier =
CheckpointVerifier::from_list(checkpoint_list, initial_tip).map_err(|e| eyre!(e))?;
// Setup checks
if restart_height
.map(|h| h >= checkpoint_verifier.checkpoint_list.max_height())
.unwrap_or(false)
{
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
FinalCheckpoint
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
FinishedVerifying
);
} else {
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
restart_height.map(InitialTip).unwrap_or(BeforeGenesis)
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
WaitingForBlocks
);
}
assert_eq!(
checkpoint_verifier.checkpoint_list.max_height(),
BlockHeight(9)
);
let mut handles = FuturesUnordered::new();
// Now verify each block
for (block, height, _hash) in blockchain {
if let Some(restart_height) = restart_height {
if height <= restart_height {
continue;
}
}
if height > checkpoint_verifier.checkpoint_list.max_height() {
break;
}
/// SPANDOC: Make sure the verifier service is ready for block {?height}
let ready_verifier_service = checkpoint_verifier
.ready_and()
.map_err(|e| eyre!(e))
.await?;
/// SPANDOC: Set up the future for block {?height}
let verify_future = timeout(
Duration::from_secs(VERIFY_TIMEOUT_SECONDS),
ready_verifier_service.call(block.clone()),
);
/// SPANDOC: spawn verification future in the background for block {?height}
let handle = tokio::spawn(verify_future.in_current_span());
handles.push(handle);
// Execution checks
if height < checkpoint_verifier.checkpoint_list.max_height() {
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
WaitingForBlocks
);
} else {
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
FinalCheckpoint
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
FinishedVerifying
);
}
}
while let Some(result) = handles.next().await {
result??.map_err(|e| eyre!(e))?;
}
// Final checks
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
FinalCheckpoint
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
FinishedVerifying
);
assert_eq!(
checkpoint_verifier.checkpoint_list.max_height(),
BlockHeight(9)
);
}
Ok(())
}
#[tokio::test]
async fn block_higher_than_max_checkpoint_fail_test() -> Result<(), Report> {
block_higher_than_max_checkpoint_fail().await
}
#[spandoc::spandoc]
async fn block_higher_than_max_checkpoint_fail() -> Result<(), Report> {
zebra_test::init();
let block0 =
Arc::<Block>::zcash_deserialize(&zebra_test::vectors::BLOCK_MAINNET_GENESIS_BYTES[..])?;
let block415000 =
Arc::<Block>::zcash_deserialize(&zebra_test::vectors::BLOCK_MAINNET_415000_BYTES[..])?;
// Make a checkpoint list containing only the genesis block
let genesis_checkpoint_list: BTreeMap<BlockHeight, block::Hash> =
[(block0.coinbase_height().unwrap(), block0.as_ref().into())]
.iter()
.cloned()
.collect();
let mut checkpoint_verifier =
CheckpointVerifier::from_list(genesis_checkpoint_list, None).map_err(|e| eyre!(e))?;
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
BeforeGenesis
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
WaitingForBlocks
);
assert_eq!(
checkpoint_verifier.checkpoint_list.max_height(),
BlockHeight(0)
);
/// SPANDOC: Make sure the verifier service is ready
let ready_verifier_service = checkpoint_verifier
.ready_and()
.map_err(|e| eyre!(e))
.await?;
/// SPANDOC: Set up the future for block 415000
let verify_future = timeout(
Duration::from_secs(VERIFY_TIMEOUT_SECONDS),
ready_verifier_service.call(block415000.clone()),
);
/// SPANDOC: Wait for the response for block 415000, and expect failure
// TODO(teor || jlusby): check error kind
let _ = verify_future
.map_err(|e| eyre!(e))
.await
.expect("timeout should not happen")
.expect_err("bad block hash should fail");
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
BeforeGenesis
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
WaitingForBlocks
);
assert_eq!(
checkpoint_verifier.checkpoint_list.max_height(),
BlockHeight(0)
);
Ok(())
}
#[tokio::test]
async fn wrong_checkpoint_hash_fail_test() -> Result<(), Report> {
wrong_checkpoint_hash_fail().await
}
#[spandoc::spandoc]
async fn wrong_checkpoint_hash_fail() -> Result<(), Report> {
zebra_test::init();
let good_block0 =
Arc::<Block>::zcash_deserialize(&zebra_test::vectors::BLOCK_MAINNET_GENESIS_BYTES[..])?;
let good_block0_hash = good_block0.hash();
// Change the header hash
let mut bad_block0 = good_block0.clone();
let mut bad_block0 = Arc::make_mut(&mut bad_block0);
bad_block0.header.version = 0;
let bad_block0: Arc<Block> = bad_block0.clone().into();
// Make a checkpoint list containing the genesis block checkpoint
let genesis_checkpoint_list: BTreeMap<BlockHeight, block::Hash> =
[(good_block0.coinbase_height().unwrap(), good_block0_hash)]
.iter()
.cloned()
.collect();
let mut checkpoint_verifier =
CheckpointVerifier::from_list(genesis_checkpoint_list, None).map_err(|e| eyre!(e))?;
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
BeforeGenesis
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
WaitingForBlocks
);
assert_eq!(
checkpoint_verifier.checkpoint_list.max_height(),
BlockHeight(0)
);
/// SPANDOC: Make sure the verifier service is ready (1/3)
let ready_verifier_service = checkpoint_verifier
.ready_and()
.map_err(|e| eyre!(e))
.await?;
/// SPANDOC: Set up the future for bad block 0 (1/3)
// TODO(teor || jlusby): check error kind
let bad_verify_future_1 = timeout(
Duration::from_secs(VERIFY_TIMEOUT_SECONDS),
ready_verifier_service.call(bad_block0.clone()),
);
// We can't await the future yet, because bad blocks aren't cleared
// until the chain is verified
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
BeforeGenesis
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
WaitingForBlocks
);
assert_eq!(
checkpoint_verifier.checkpoint_list.max_height(),
BlockHeight(0)
);
/// SPANDOC: Make sure the verifier service is ready (2/3)
let ready_verifier_service = checkpoint_verifier
.ready_and()
.map_err(|e| eyre!(e))
.await?;
/// SPANDOC: Set up the future for bad block 0 again (2/3)
// TODO(teor || jlusby): check error kind
let bad_verify_future_2 = timeout(
Duration::from_secs(VERIFY_TIMEOUT_SECONDS),
ready_verifier_service.call(bad_block0.clone()),
);
// We can't await the future yet, because bad blocks aren't cleared
// until the chain is verified
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
BeforeGenesis
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
WaitingForBlocks
);
assert_eq!(
checkpoint_verifier.checkpoint_list.max_height(),
BlockHeight(0)
);
/// SPANDOC: Make sure the verifier service is ready (3/3)
let ready_verifier_service = checkpoint_verifier
.ready_and()
.map_err(|e| eyre!(e))
.await?;
/// SPANDOC: Set up the future for good block 0 (3/3)
let good_verify_future = timeout(
Duration::from_secs(VERIFY_TIMEOUT_SECONDS),
ready_verifier_service.call(good_block0.clone()),
);
/// SPANDOC: Wait for the response for good block 0, and expect success (3/3)
// TODO(teor || jlusby): check error kind
let verify_response = good_verify_future
.map_err(|e| eyre!(e))
.await
.expect("timeout should not happen")
.expect("future should succeed");
assert_eq!(verify_response, good_block0_hash);
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
FinalCheckpoint
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
FinishedVerifying
);
assert_eq!(
checkpoint_verifier.checkpoint_list.max_height(),
BlockHeight(0)
);
// Now, await the bad futures, which should have completed
/// SPANDOC: Wait for the response for block 0, and expect failure (1/3)
// TODO(teor || jlusby): check error kind
let _ = bad_verify_future_1
.map_err(|e| eyre!(e))
.await
.expect("timeout should not happen")
.expect_err("bad block hash should fail");
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
FinalCheckpoint
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
FinishedVerifying
);
assert_eq!(
checkpoint_verifier.checkpoint_list.max_height(),
BlockHeight(0)
);
/// SPANDOC: Wait for the response for block 0, and expect failure again (2/3)
// TODO(teor || jlusby): check error kind
let _ = bad_verify_future_2
.map_err(|e| eyre!(e))
.await
.expect("timeout should not happen")
.expect_err("bad block hash should fail");
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
FinalCheckpoint
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
FinishedVerifying
);
assert_eq!(
checkpoint_verifier.checkpoint_list.max_height(),
BlockHeight(0)
);
Ok(())
}
#[tokio::test]
async fn checkpoint_drop_cancel_test() -> Result<(), Report> {
checkpoint_drop_cancel().await
}
#[spandoc::spandoc]
async fn checkpoint_drop_cancel() -> Result<(), Report> {
zebra_test::init();
// Parse all the blocks
let mut checkpoint_data = Vec::new();
for b in &[
// Continous blocks are verified
&zebra_test::vectors::BLOCK_MAINNET_GENESIS_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_1_BYTES[..],
// Other blocks can't verify, so they are rejected on drop
&zebra_test::vectors::BLOCK_MAINNET_415000_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_434873_BYTES[..],
] {
let block = Arc::<Block>::zcash_deserialize(*b)?;
let hash = block.hash();
checkpoint_data.push((block.clone(), block.coinbase_height().unwrap(), hash));
}
// Make a checkpoint list containing all the blocks
let checkpoint_list: BTreeMap<BlockHeight, block::Hash> = checkpoint_data
.iter()
.map(|(_block, height, hash)| (*height, *hash))
.collect();
let mut checkpoint_verifier =
CheckpointVerifier::from_list(checkpoint_list, None).map_err(|e| eyre!(e))?;
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
BeforeGenesis
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
WaitingForBlocks
);
assert_eq!(
checkpoint_verifier.checkpoint_list.max_height(),
BlockHeight(434873)
);
let mut futures = Vec::new();
// Now collect verify futures for each block
for (block, height, hash) in checkpoint_data {
/// SPANDOC: Make sure the verifier service is ready
let ready_verifier_service = checkpoint_verifier
.ready_and()
.map_err(|e| eyre!(e))
.await?;
/// SPANDOC: Set up the future for block {?height}
let verify_future = timeout(
Duration::from_secs(VERIFY_TIMEOUT_SECONDS),
ready_verifier_service.call(block.clone()),
);
futures.push((verify_future, height, hash));
// Only continuous checkpoints verify
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
PreviousCheckpoint(BlockHeight(min(height.0, 1)))
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
WaitingForBlocks
);
assert_eq!(
checkpoint_verifier.checkpoint_list.max_height(),
BlockHeight(434873)
);
}
// Now drop the verifier, to cancel the futures
drop(checkpoint_verifier);
for (verify_future, height, hash) in futures {
/// SPANDOC: Check the response for block {?height}
let verify_response = verify_future
.map_err(|e| eyre!(e))
.await
.expect("timeout should not happen");
if height <= BlockHeight(1) {
let verify_hash =
verify_response.expect("Continuous checkpoints should have succeeded before drop");
assert_eq!(verify_hash, hash);
} else {
// TODO(teor || jlusby): check error kind
verify_response.expect_err("Pending futures should fail on drop");
}
}
Ok(())
}
#[tokio::test]
async fn hard_coded_mainnet_test() -> Result<(), Report> {
hard_coded_mainnet().await
}
#[spandoc::spandoc]
async fn hard_coded_mainnet() -> Result<(), Report> {
zebra_test::init();
let block0 =
Arc::<Block>::zcash_deserialize(&zebra_test::vectors::BLOCK_MAINNET_GENESIS_BYTES[..])?;
let hash0 = block0.hash();
// Use the hard-coded checkpoint list
let mut checkpoint_verifier = CheckpointVerifier::new(Network::Mainnet, None);
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
BeforeGenesis
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
WaitingForBlocks
);
assert!(checkpoint_verifier.checkpoint_list.max_height() > BlockHeight(0));
/// SPANDOC: Make sure the verifier service is ready
let ready_verifier_service = checkpoint_verifier
.ready_and()
.map_err(|e| eyre!(e))
.await?;
/// SPANDOC: Set up the future for block 0
let verify_future = timeout(
Duration::from_secs(VERIFY_TIMEOUT_SECONDS),
ready_verifier_service.call(block0.clone()),
);
/// SPANDOC: Wait for the response for block 0
// TODO(teor || jlusby): check error kind
let verify_response = verify_future
.map_err(|e| eyre!(e))
.await
.expect("timeout should not happen")
.expect("block should verify");
assert_eq!(verify_response, hash0);
assert_eq!(
checkpoint_verifier.previous_checkpoint_height(),
PreviousCheckpoint(BlockHeight(0))
);
assert_eq!(
checkpoint_verifier.target_checkpoint_height(),
WaitingForBlocks
);
// The lists will get bigger over time, so we just pick a recent height
assert!(checkpoint_verifier.checkpoint_list.max_height() > BlockHeight(900_000));
Ok(())
}