zebra/zebra-chain/src/block/difficulty.rs

520 lines
19 KiB
Rust
Raw Normal View History

//! Block difficulty data structures and calculations
//!
//! The block difficulty "target threshold" is stored in the block header as a
//! 32-bit `CompactDifficulty`. The `BlockHeaderHash` must be less than or equal
//! to the `ExpandedDifficulty` threshold, when represented as a 256-bit integer
//! in little-endian order.
//!
//! The target threshold is also used to calculate the `Work` for each block.
//! The block work is used to find the chain with the greatest total work. Each
//! block's work value depends on the fixed threshold in the block header, not
//! the actual work represented by the block header hash.
use crate::block::BlockHeaderHash;
use std::cmp::{Ordering, PartialEq, PartialOrd};
use std::fmt;
use primitive_types::U256;
#[cfg(test)]
use proptest::prelude::*;
#[cfg(test)]
use proptest_derive::Arbitrary;
/// A 32-bit "compact bits" value, which represents the difficulty threshold for
/// a block header.
///
/// Used for:
/// - checking the `difficulty_threshold` value in the block header,
/// - calculating the 256-bit `ExpandedDifficulty` threshold, for comparison
/// with the block header hash, and
/// - calculating the block work.
///
/// Details:
///
/// This is a floating-point encoding, with a 24-bit signed mantissa,
/// an 8-bit exponent, an offset of 3, and a radix of 256.
/// (IEEE 754 32-bit floating-point values use a separate sign bit, an implicit
/// leading mantissa bit, an offset of 127, and a radix of 2.)
///
/// The precise bit pattern of a `CompactDifficulty` value is
/// consensus-critical, because it is used for the `difficulty_threshold` field,
/// which is:
/// - part of the `BlockHeader`, which is used to create the
/// `BlockHeaderHash`, and
/// - bitwise equal to the median `ExpandedDifficulty` value of recent blocks,
/// when encoded to `CompactDifficulty` using the specified conversion
/// function.
///
/// Without these consensus rules, some `ExpandedDifficulty` values would have
/// multiple equivalent `CompactDifficulty` values, due to redundancy in the
/// floating-point format.
#[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize)]
#[cfg_attr(test, derive(Arbitrary))]
pub struct CompactDifficulty(pub u32);
impl fmt::Debug for CompactDifficulty {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("CompactDifficulty")
// Use hex, because it's a float
.field(&format_args!("{:#010x}", self.0))
.finish()
}
}
/// A 256-bit unsigned "expanded difficulty" value.
///
/// Used as a target threshold for the difficulty of a `BlockHeaderHash`.
///
/// Details:
///
/// The precise bit pattern of an `ExpandedDifficulty` value is
/// consensus-critical, because it is compared with the `BlockHeaderHash`.
///
/// Note that each `CompactDifficulty` value represents a range of
/// `ExpandedDifficulty` values, because the precision of the
/// floating-point format requires rounding on conversion.
///
/// Therefore, consensus-critical code must perform the specified
/// conversions to `CompactDifficulty`, even if the original
/// `ExpandedDifficulty` values are known.
#[derive(Clone, Copy, Eq, PartialEq, Ord, PartialOrd)]
pub struct ExpandedDifficulty(U256);
impl fmt::Debug for ExpandedDifficulty {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut buf = [0; 32];
// Use the same byte order as BlockHeaderHash
self.0.to_little_endian(&mut buf);
f.debug_tuple("ExpandedDifficulty")
.field(&hex::encode(&buf))
.finish()
}
}
impl CompactDifficulty {
/// CompactDifficulty exponent base.
const BASE: u32 = 256;
/// CompactDifficulty exponent offset.
const OFFSET: i32 = 3;
/// CompactDifficulty floating-point precision.
const PRECISION: u32 = 24;
/// CompactDifficulty sign bit, part of the signed mantissa.
const SIGN_BIT: u32 = 1 << (CompactDifficulty::PRECISION - 1);
/// CompactDifficulty unsigned mantissa mask.
///
/// Also the maximum unsigned mantissa value.
const UNSIGNED_MANTISSA_MASK: u32 = CompactDifficulty::SIGN_BIT - 1;
/// Calculate the ExpandedDifficulty for a compact representation.
///
/// See `ToTarget()` in the Zcash Specification, and `CheckProofOfWork()` in
/// zcashd.
///
/// Returns None for negative, zero, and overflow values. (zcashd rejects
/// these values, before comparing the hash.)
pub fn to_expanded(&self) -> Option<ExpandedDifficulty> {
// The constants for this floating-point representation.
// Alias the struct constants here, so the code is easier to read.
const BASE: u32 = CompactDifficulty::BASE;
const OFFSET: i32 = CompactDifficulty::OFFSET;
const PRECISION: u32 = CompactDifficulty::PRECISION;
const SIGN_BIT: u32 = CompactDifficulty::SIGN_BIT;
const UNSIGNED_MANTISSA_MASK: u32 = CompactDifficulty::UNSIGNED_MANTISSA_MASK;
// Negative values in this floating-point representation.
// 0 if (x & 2^23 == 2^23)
// zcashd rejects negative values without comparing the hash.
if self.0 & SIGN_BIT == SIGN_BIT {
return None;
}
// The components of the result
// The fractional part of the floating-point number
// x & (2^23 - 1)
let mantissa = self.0 & UNSIGNED_MANTISSA_MASK;
// The exponent for the multiplier in the floating-point number
// 256^(floor(x/(2^24)) - 3)
// The i32 conversion is safe, because we've just divided self by 2^24.
let exponent = ((self.0 >> PRECISION) as i32) - OFFSET;
// Normalise the mantissa and exponent before multiplying.
//
// zcashd rejects non-zero overflow values, but accepts overflows where
// all the overflowing bits are zero. It also allows underflows.
let (mantissa, exponent) = match (mantissa, exponent) {
// Overflow: check for non-zero overflow bits
//
// If m is non-zero, overflow. If m is zero, invalid.
(_, e) if (e >= 32) => return None,
// If m is larger than the remaining bytes, overflow.
// Otherwise, avoid overflows in base^exponent.
(m, e) if (e == 31 && m > u8::MAX.into()) => return None,
(m, e) if (e == 31 && m <= u8::MAX.into()) => (m << 16, e - 2),
(m, e) if (e == 30 && m > u16::MAX.into()) => return None,
(m, e) if (e == 30 && m <= u16::MAX.into()) => (m << 8, e - 1),
// Underflow: perform the right shift.
// The abs is safe, because we've just divided by 2^24, and offset
// is small.
(m, e) if (e < 0) => (m >> ((e.abs() * 8) as u32), 0),
(m, e) => (m, e),
};
// Now calculate the result: mantissa*base^exponent
// Earlier code should make sure all these values are in range.
let mantissa: U256 = mantissa.into();
let base: U256 = BASE.into();
let exponent: U256 = exponent.into();
let result = mantissa * base.pow(exponent);
if result == U256::zero() {
// zcashd rejects zero values, without comparing the hash
None
} else {
Some(ExpandedDifficulty(result))
}
}
}
impl ExpandedDifficulty {
/// Returns the difficulty of the hash.
///
/// Used to implement comparisons between difficulties and hashes.
///
/// Usage:
///
/// Compare the hash with the calculated difficulty value, using Rust's
/// standard comparison operators.
///
/// Hashes are not used to calculate the difficulties of future blocks, so
/// users of this module should avoid converting hashes into difficulties.
fn from_hash(hash: &BlockHeaderHash) -> ExpandedDifficulty {
ExpandedDifficulty(U256::from_little_endian(&hash.0))
}
}
impl PartialEq<BlockHeaderHash> for ExpandedDifficulty {
/// Is `self` equal to `other`?
///
/// See `partial_cmp` for details.
fn eq(&self, other: &BlockHeaderHash) -> bool {
self.partial_cmp(other) == Some(Ordering::Equal)
}
}
impl PartialOrd<BlockHeaderHash> for ExpandedDifficulty {
/// `BlockHeaderHash`es are compared with `ExpandedDifficulty` thresholds by
/// converting the hash to a 256-bit integer in little-endian order.
fn partial_cmp(&self, other: &BlockHeaderHash) -> Option<Ordering> {
self.partial_cmp(&ExpandedDifficulty::from_hash(other))
}
}
impl PartialEq<ExpandedDifficulty> for BlockHeaderHash {
/// Is `self` equal to `other`?
///
/// See `partial_cmp` for details.
fn eq(&self, other: &ExpandedDifficulty) -> bool {
other.eq(self)
}
}
impl PartialOrd<ExpandedDifficulty> for BlockHeaderHash {
/// `BlockHeaderHash`es are compared with `ExpandedDifficulty` thresholds by
/// converting the hash to a 256-bit integer in little-endian order.
fn partial_cmp(&self, other: &ExpandedDifficulty) -> Option<Ordering> {
use Ordering::*;
// Use the base implementation, but reverse the order.
match other.partial_cmp(self) {
Some(Less) => Some(Greater),
Some(Greater) => Some(Less),
Some(Equal) => Some(Equal),
None => unreachable!(
"Unexpected incomparable values: difficulties and hashes have a total order."
),
}
}
}
#[cfg(test)]
impl Arbitrary for ExpandedDifficulty {
type Parameters = ();
fn arbitrary_with(_args: ()) -> Self::Strategy {
(any::<[u8; 32]>())
.prop_map(|v| ExpandedDifficulty(U256::from_little_endian(&v)))
.boxed()
}
type Strategy = BoxedStrategy<Self>;
}
#[cfg(test)]
mod tests {
use super::*;
use color_eyre::eyre::Report;
use std::sync::Arc;
use crate::block::Block;
use crate::serialization::ZcashDeserialize;
// Alias the struct constants here, so the code is easier to read.
const PRECISION: u32 = CompactDifficulty::PRECISION;
const SIGN_BIT: u32 = CompactDifficulty::SIGN_BIT;
const UNSIGNED_MANTISSA_MASK: u32 = CompactDifficulty::UNSIGNED_MANTISSA_MASK;
const OFFSET: i32 = CompactDifficulty::OFFSET;
/// Test debug formatting.
#[test]
fn debug_format() {
zebra_test::init();
assert_eq!(
format!("{:?}", CompactDifficulty(0)),
"CompactDifficulty(0x00000000)"
);
assert_eq!(
format!("{:?}", CompactDifficulty(1)),
"CompactDifficulty(0x00000001)"
);
assert_eq!(
format!("{:?}", CompactDifficulty(u32::MAX)),
"CompactDifficulty(0xffffffff)"
);
assert_eq!(format!("{:?}", ExpandedDifficulty(U256::zero())), "ExpandedDifficulty(\"0000000000000000000000000000000000000000000000000000000000000000\")");
assert_eq!(format!("{:?}", ExpandedDifficulty(U256::one())), "ExpandedDifficulty(\"0100000000000000000000000000000000000000000000000000000000000000\")");
assert_eq!(format!("{:?}", ExpandedDifficulty(U256::MAX)), "ExpandedDifficulty(\"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff\")");
}
/// Test zero values for CompactDifficulty.
#[test]
fn compact_zero() {
zebra_test::init();
let natural_zero = CompactDifficulty(0);
assert_eq!(natural_zero.to_expanded(), None);
// Small value zeroes
let small_zero_1 = CompactDifficulty(1);
assert_eq!(small_zero_1.to_expanded(), None);
let small_zero_max = CompactDifficulty(UNSIGNED_MANTISSA_MASK);
assert_eq!(small_zero_max.to_expanded(), None);
// Special-cased zeroes, negative in the floating-point representation
let sc_zero = CompactDifficulty(SIGN_BIT);
assert_eq!(sc_zero.to_expanded(), None);
let sc_zero_next = CompactDifficulty(SIGN_BIT + 1);
assert_eq!(sc_zero_next.to_expanded(), None);
let sc_zero_high = CompactDifficulty((1 << PRECISION) - 1);
assert_eq!(sc_zero_high.to_expanded(), None);
let sc_zero_max = CompactDifficulty(u32::MAX);
assert_eq!(sc_zero_max.to_expanded(), None);
}
/// Test extreme values for CompactDifficulty.
#[test]
fn compact_extremes() {
zebra_test::init();
// Values equal to one
let expanded_one = Some(ExpandedDifficulty(U256::one()));
let one = CompactDifficulty(OFFSET as u32 * (1 << PRECISION) + 1);
assert_eq!(one.to_expanded(), expanded_one);
let another_one = CompactDifficulty((1 << PRECISION) + (1 << 16));
assert_eq!(another_one.to_expanded(), expanded_one);
// Maximum mantissa
let expanded_mant = Some(ExpandedDifficulty(UNSIGNED_MANTISSA_MASK.into()));
let mant = CompactDifficulty(OFFSET as u32 * (1 << PRECISION) + UNSIGNED_MANTISSA_MASK);
assert_eq!(mant.to_expanded(), expanded_mant);
// Maximum valid exponent
let exponent: U256 = (31 * 8).into();
let expanded_exp = Some(ExpandedDifficulty(U256::from(2).pow(exponent)));
let exp = CompactDifficulty((31 + OFFSET as u32) * (1 << PRECISION) + 1);
assert_eq!(exp.to_expanded(), expanded_exp);
// Maximum valid mantissa and exponent
let exponent: U256 = (29 * 8).into();
let expanded_me = U256::from(UNSIGNED_MANTISSA_MASK) * U256::from(2).pow(exponent);
let expanded_me = Some(ExpandedDifficulty(expanded_me));
let me = CompactDifficulty((31 + 1) * (1 << PRECISION) + UNSIGNED_MANTISSA_MASK);
assert_eq!(me.to_expanded(), expanded_me);
// Maximum value, at least according to the spec
//
// According to ToTarget() in the spec, this value is
// `(2^23 - 1) * 256^253`, which is larger than the maximum expanded
// value. Therefore, a block can never pass with this threshold.
//
// zcashd rejects these blocks without comparing the hash.
let difficulty_max = CompactDifficulty(u32::MAX & !SIGN_BIT);
assert_eq!(difficulty_max.to_expanded(), None);
}
/// Test blocks using CompactDifficulty.
#[test]
#[spandoc::spandoc]
fn block_difficulty() -> Result<(), Report> {
zebra_test::init();
let mut blockchain = Vec::new();
for b in &[
&zebra_test::vectors::BLOCK_MAINNET_GENESIS_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_1_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_2_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_3_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_4_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_5_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_6_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_7_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_8_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_9_BYTES[..],
&zebra_test::vectors::BLOCK_MAINNET_10_BYTES[..],
] {
let block = Arc::<Block>::zcash_deserialize(*b)?;
let hash: BlockHeaderHash = block.as_ref().into();
blockchain.push((block.clone(), block.coinbase_height().unwrap(), hash));
}
let zero = ExpandedDifficulty(U256::zero());
let one = ExpandedDifficulty(U256::one());
let max_value = ExpandedDifficulty(U256::MAX);
for (block, height, hash) in blockchain {
/// SPANDOC: Calculate the threshold for mainnet block {?height}
let threshold = block
.header
.difficulty_threshold
.to_expanded()
.expect("Chain blocks have valid difficulty thresholds.");
/// SPANDOC: Check the difficulty for mainnet block {?height, ?threshold, ?hash}
{
assert!(hash <= threshold);
// also check the comparison operators work
assert!(hash > zero);
assert!(hash > one);
assert!(hash < max_value);
}
}
Ok(())
}
/// Test ExpandedDifficulty ordering
#[test]
#[spandoc::spandoc]
#[allow(clippy::eq_op)]
fn expanded_order() -> Result<(), Report> {
zebra_test::init();
let zero = ExpandedDifficulty(U256::zero());
let one = ExpandedDifficulty(U256::one());
let max_value = ExpandedDifficulty(U256::MAX);
assert!(zero < one);
assert!(zero < max_value);
assert!(one < max_value);
assert_eq!(zero, zero);
assert!(zero <= one);
assert!(one >= zero);
assert!(one > zero);
Ok(())
}
/// Test ExpandedDifficulty and BlockHeaderHash ordering
#[test]
#[spandoc::spandoc]
fn expanded_hash_order() -> Result<(), Report> {
zebra_test::init();
let ex_zero = ExpandedDifficulty(U256::zero());
let ex_one = ExpandedDifficulty(U256::one());
let ex_max = ExpandedDifficulty(U256::MAX);
let hash_zero = BlockHeaderHash([0; 32]);
let hash_max = BlockHeaderHash([0xff; 32]);
assert_eq!(hash_zero, ex_zero);
assert!(hash_zero < ex_one);
assert!(hash_zero < ex_max);
assert!(hash_max > ex_zero);
assert!(hash_max > ex_one);
assert_eq!(hash_max, ex_max);
assert!(ex_one > hash_zero);
assert!(ex_one < hash_max);
assert!(hash_zero >= ex_zero);
assert!(ex_zero >= hash_zero);
assert!(hash_zero <= ex_zero);
assert!(ex_zero <= hash_zero);
Ok(())
}
proptest! {
/// Check that CompactDifficulty expands without panicking, and compares
/// correctly.
#[test]
fn prop_compact_expand(compact in any::<CompactDifficulty>()) {
// TODO: round-trip test, once we have ExpandedDifficulty::to_compact()
let expanded = compact.to_expanded();
let hash_zero = BlockHeaderHash([0; 32]);
let hash_max = BlockHeaderHash([0xff; 32]);
if let Some(expanded) = expanded {
prop_assert!(expanded >= hash_zero);
prop_assert!(expanded <= hash_max);
}
}
/// Check that a random ExpandedDifficulty compares correctly with fixed BlockHeaderHashes.
#[test]
fn prop_expanded_order(expanded in any::<ExpandedDifficulty>()) {
// TODO: round-trip test, once we have ExpandedDifficulty::to_compact()
let hash_zero = BlockHeaderHash([0; 32]);
let hash_max = BlockHeaderHash([0xff; 32]);
prop_assert!(expanded >= hash_zero);
prop_assert!(expanded <= hash_max);
}
/// Check that ExpandedDifficulty compares correctly with a random BlockHeaderHash.
#[test]
fn prop_hash_order(hash in any::<BlockHeaderHash>()) {
let ex_zero = ExpandedDifficulty(U256::zero());
let ex_one = ExpandedDifficulty(U256::one());
let ex_max = ExpandedDifficulty(U256::MAX);
prop_assert!(hash >= ex_zero);
prop_assert!(hash <= ex_max);
prop_assert!(hash >= ex_one || hash == ex_zero);
}
/// Check that a random ExpandedDifficulty and BlockHeaderHash compare correctly.
#[test]
#[allow(clippy::double_comparisons)]
fn prop_expanded_hash_order(expanded in any::<ExpandedDifficulty>(), hash in any::<BlockHeaderHash>()) {
prop_assert!(expanded < hash || expanded > hash || expanded == hash);
}
}
}