zebra/zebra-state/src/service/non_finalized_state/chain.rs

412 lines
14 KiB
Rust
Raw Normal View History

use std::{
cmp::Ordering,
collections::{BTreeMap, HashMap, HashSet},
ops::Deref,
};
use tracing::{debug_span, instrument, trace};
use zebra_chain::{
block, primitives::Groth16Proof, sapling, sprout, transaction, transparent,
work::difficulty::PartialCumulativeWork,
};
use crate::{PreparedBlock, Utxo};
#[derive(Default, Clone)]
pub struct Chain {
pub blocks: BTreeMap<block::Height, PreparedBlock>,
pub height_by_hash: HashMap<block::Hash, block::Height>,
pub tx_by_hash: HashMap<transaction::Hash, (block::Height, usize)>,
pub created_utxos: HashMap<transparent::OutPoint, Utxo>,
spent_utxos: HashSet<transparent::OutPoint>,
sprout_anchors: HashSet<sprout::tree::Root>,
sapling_anchors: HashSet<sapling::tree::Root>,
sprout_nullifiers: HashSet<sprout::Nullifier>,
sapling_nullifiers: HashSet<sapling::Nullifier>,
partial_cumulative_work: PartialCumulativeWork,
}
impl Chain {
/// Push a contextually valid non-finalized block into a chain as the new tip.
#[instrument(level = "debug", skip(self, block), fields(block = %block.block))]
pub fn push(&mut self, block: PreparedBlock) {
// update cumulative data members
self.update_chain_state_with(&block);
tracing::debug!(block = %block.block, "adding block to chain");
self.blocks.insert(block.height, block);
}
/// Remove the lowest height block of the non-finalized portion of a chain.
#[instrument(level = "debug", skip(self))]
pub fn pop_root(&mut self) -> PreparedBlock {
let block_height = self.lowest_height();
// remove the lowest height block from self.blocks
let block = self
.blocks
.remove(&block_height)
.expect("only called while blocks is populated");
// update cumulative data members
self.revert_chain_state_with(&block);
// return the prepared block
block
}
fn lowest_height(&self) -> block::Height {
self.blocks
.keys()
.next()
.cloned()
.expect("only called while blocks is populated")
}
/// Fork a chain at the block with the given hash, if it is part of this
/// chain.
pub fn fork(&self, fork_tip: block::Hash) -> Option<Self> {
if !self.height_by_hash.contains_key(&fork_tip) {
return None;
}
let mut forked = self.clone();
while forked.non_finalized_tip_hash() != fork_tip {
forked.pop_tip();
}
Some(forked)
}
pub fn non_finalized_tip_hash(&self) -> block::Hash {
self.blocks
.values()
.next_back()
.expect("only called while blocks is populated")
.hash
}
/// Remove the highest height block of the non-finalized portion of a chain.
fn pop_tip(&mut self) {
let block_height = self.non_finalized_tip_height();
let block = self
.blocks
.remove(&block_height)
.expect("only called while blocks is populated");
assert!(
!self.blocks.is_empty(),
"Non-finalized chains must have at least one block to be valid"
);
self.revert_chain_state_with(&block);
}
pub fn non_finalized_tip_height(&self) -> block::Height {
*self
.blocks
.keys()
.next_back()
.expect("only called while blocks is populated")
}
2020-11-06 14:31:25 -08:00
pub fn is_empty(&self) -> bool {
self.blocks.is_empty()
}
}
/// Helper trait to organize inverse operations done on the `Chain` type. Used to
/// overload the `update_chain_state_with` and `revert_chain_state_with` methods
/// based on the type of the argument.
///
/// This trait was motivated by the length of the `push` and `pop_root` functions
/// and fear that it would be easy to introduce bugs when updating them unless
/// the code was reorganized to keep related operations adjacent to eachother.
trait UpdateWith<T> {
/// Update `Chain` cumulative data members to add data that are derived from
/// `T`
fn update_chain_state_with(&mut self, _: &T);
/// Update `Chain` cumulative data members to remove data that are derived
/// from `T`
fn revert_chain_state_with(&mut self, _: &T);
}
impl UpdateWith<PreparedBlock> for Chain {
fn update_chain_state_with(&mut self, prepared: &PreparedBlock) {
let (block, hash, height, transaction_hashes) = (
prepared.block.as_ref(),
prepared.hash,
prepared.height,
&prepared.transaction_hashes,
);
// add hash to height_by_hash
let prior_height = self.height_by_hash.insert(hash, height);
assert!(
prior_height.is_none(),
"block heights must be unique within a single chain"
);
// add work to partial cumulative work
let block_work = block
.header
.difficulty_threshold
.to_work()
.expect("work has already been validated");
self.partial_cumulative_work += block_work;
// for each transaction in block
for (transaction_index, (transaction, transaction_hash)) in block
.transactions
.iter()
.zip(transaction_hashes.iter().cloned())
.enumerate()
{
use transaction::Transaction::*;
let (inputs, joinsplit_data, sapling_shielded_data) = match transaction.deref() {
V4 {
inputs,
joinsplit_data,
sapling_shielded_data,
..
} => (inputs, joinsplit_data, sapling_shielded_data),
V5 { .. } => unimplemented!("v5 transaction format as specified in ZIP-225"),
V1 { .. } | V2 { .. } | V3 { .. } => unreachable!(
"older transaction versions only exist in finalized blocks pre sapling",
),
};
// add key `transaction.hash` and value `(height, tx_index)` to `tx_by_hash`
let prior_pair = self
.tx_by_hash
.insert(transaction_hash, (height, transaction_index));
assert!(
prior_pair.is_none(),
"transactions must be unique within a single chain"
);
// add the utxos this produced
self.update_chain_state_with(&prepared.new_outputs);
// add the utxos this consumed
self.update_chain_state_with(inputs);
// add sprout anchor and nullifiers
self.update_chain_state_with(joinsplit_data);
// add sapling anchor and nullifier
self.update_chain_state_with(sapling_shielded_data);
}
}
#[instrument(skip(self, prepared), fields(block = %prepared.block))]
fn revert_chain_state_with(&mut self, prepared: &PreparedBlock) {
let (block, hash, transaction_hashes) = (
prepared.block.as_ref(),
prepared.hash,
&prepared.transaction_hashes,
);
// remove the blocks hash from `height_by_hash`
assert!(
self.height_by_hash.remove(&hash).is_some(),
"hash must be present if block was"
);
// remove work from partial_cumulative_work
let block_work = block
.header
.difficulty_threshold
.to_work()
.expect("work has already been validated");
self.partial_cumulative_work -= block_work;
// for each transaction in block
for (transaction, transaction_hash) in
block.transactions.iter().zip(transaction_hashes.iter())
{
use transaction::Transaction::*;
let (inputs, joinsplit_data, sapling_shielded_data) = match transaction.deref() {
V4 {
inputs,
joinsplit_data,
sapling_shielded_data,
..
} => (inputs, joinsplit_data, sapling_shielded_data),
V5 { .. } => unimplemented!("v5 transaction format as specified in ZIP-225"),
V1 { .. } | V2 { .. } | V3 { .. } => unreachable!(
"older transaction versions only exist in finalized blocks pre sapling",
),
};
// remove `transaction.hash` from `tx_by_hash`
assert!(
self.tx_by_hash.remove(transaction_hash).is_some(),
"transactions must be present if block was"
);
// remove the utxos this produced
self.revert_chain_state_with(&prepared.new_outputs);
// remove the utxos this consumed
self.revert_chain_state_with(inputs);
// remove sprout anchor and nullifiers
self.revert_chain_state_with(joinsplit_data);
// remove sapling anchor and nullfier
self.revert_chain_state_with(sapling_shielded_data);
}
}
}
impl UpdateWith<HashMap<transparent::OutPoint, Utxo>> for Chain {
fn update_chain_state_with(&mut self, utxos: &HashMap<transparent::OutPoint, Utxo>) {
self.created_utxos
.extend(utxos.iter().map(|(k, v)| (*k, v.clone())));
}
fn revert_chain_state_with(&mut self, utxos: &HashMap<transparent::OutPoint, Utxo>) {
self.created_utxos
.retain(|outpoint, _| !utxos.contains_key(outpoint));
}
}
impl UpdateWith<Vec<transparent::Input>> for Chain {
fn update_chain_state_with(&mut self, inputs: &Vec<transparent::Input>) {
for consumed_utxo in inputs {
match consumed_utxo {
transparent::Input::PrevOut { outpoint, .. } => {
self.spent_utxos.insert(*outpoint);
}
transparent::Input::Coinbase { .. } => {}
}
}
}
fn revert_chain_state_with(&mut self, inputs: &Vec<transparent::Input>) {
for consumed_utxo in inputs {
match consumed_utxo {
transparent::Input::PrevOut { outpoint, .. } => {
assert!(
self.spent_utxos.remove(outpoint),
"spent_utxos must be present if block was"
);
}
transparent::Input::Coinbase { .. } => {}
}
}
}
}
impl UpdateWith<Option<transaction::JoinSplitData<Groth16Proof>>> for Chain {
#[instrument(skip(self, joinsplit_data))]
fn update_chain_state_with(
&mut self,
joinsplit_data: &Option<transaction::JoinSplitData<Groth16Proof>>,
) {
if let Some(joinsplit_data) = joinsplit_data {
for sprout::JoinSplit { nullifiers, .. } in joinsplit_data.joinsplits() {
let span = debug_span!("revert_chain_state_with", ?nullifiers);
let _entered = span.enter();
trace!("Adding sprout nullifiers.");
self.sprout_nullifiers.insert(nullifiers[0]);
self.sprout_nullifiers.insert(nullifiers[1]);
}
}
}
#[instrument(skip(self, joinsplit_data))]
fn revert_chain_state_with(
&mut self,
joinsplit_data: &Option<transaction::JoinSplitData<Groth16Proof>>,
) {
if let Some(joinsplit_data) = joinsplit_data {
for sprout::JoinSplit { nullifiers, .. } in joinsplit_data.joinsplits() {
let span = debug_span!("revert_chain_state_with", ?nullifiers);
let _entered = span.enter();
trace!("Removing sprout nullifiers.");
assert!(
self.sprout_nullifiers.remove(&nullifiers[0]),
"nullifiers must be present if block was"
);
assert!(
self.sprout_nullifiers.remove(&nullifiers[1]),
"nullifiers must be present if block was"
);
}
}
}
}
impl<AnchorV> UpdateWith<Option<sapling::ShieldedData<AnchorV>>> for Chain
where
AnchorV: sapling::AnchorVariant + Clone,
{
fn update_chain_state_with(
&mut self,
sapling_shielded_data: &Option<sapling::ShieldedData<AnchorV>>,
) {
if let Some(sapling_shielded_data) = sapling_shielded_data {
for nullifier in sapling_shielded_data.nullifiers() {
self.sapling_nullifiers.insert(*nullifier);
}
}
}
fn revert_chain_state_with(
&mut self,
sapling_shielded_data: &Option<sapling::ShieldedData<AnchorV>>,
) {
if let Some(sapling_shielded_data) = sapling_shielded_data {
for nullifier in sapling_shielded_data.nullifiers() {
assert!(
self.sapling_nullifiers.remove(nullifier),
"nullifier must be present if block was"
);
}
}
}
}
impl PartialEq for Chain {
fn eq(&self, other: &Self) -> bool {
self.partial_cmp(other) == Some(Ordering::Equal)
}
}
impl Eq for Chain {}
impl PartialOrd for Chain {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Chain {
fn cmp(&self, other: &Self) -> Ordering {
if self.partial_cumulative_work != other.partial_cumulative_work {
self.partial_cumulative_work
.cmp(&other.partial_cumulative_work)
} else {
let self_hash = self
.blocks
.values()
.last()
.expect("always at least 1 element")
.hash;
let other_hash = other
.blocks
.values()
.last()
.expect("always at least 1 element")
.hash;
// This comparison is a tie-breaker within the local node, so it does not need to
// be consistent with the ordering on `ExpandedDifficulty` and `block::Hash`.
match self_hash.0.cmp(&other_hash.0) {
Ordering::Equal => unreachable!("Chain tip block hashes are always unique"),
ordering => ordering,
}
}
}
}