Refactor message serialization as a tokio codec.

This provides a significantly cleaner API to consumers, because it
allows using adaptors that convert a TCP stream to a stream of messages,
and potentially allows more efficient message handling.
This commit is contained in:
Henry de Valence 2019-09-24 11:25:06 -07:00
parent e6e055be7c
commit c2e378f3fa
8 changed files with 565 additions and 444 deletions

View File

@ -7,6 +7,7 @@ edition = "2018"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
bytes = "0.4"
rand = "0.7"
byteorder = "1.3"
chrono = "0.4"

View File

@ -7,6 +7,9 @@ extern crate failure;
#[macro_use]
extern crate tracing;
mod network;
pub use network::Network;
pub mod protocol;
pub mod types;

View File

@ -0,0 +1,20 @@
use crate::{constants::magics, types::Magic};
/// An enum describing the possible network choices.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub enum Network {
/// The production mainnet.
Mainnet,
/// The testnet.
Testnet,
}
impl Network {
/// Get the magic value associated to this `Network`.
pub fn magic(&self) -> Magic {
match self {
Network::Mainnet => magics::MAINNET,
Network::Testnet => magics::TESTNET,
}
}
}

View File

@ -1,5 +1,4 @@
//! Zcash network protocol handling.
pub mod message;
pub mod codec;
pub mod message;

View File

@ -0,0 +1,505 @@
//! A Tokio codec mapping byte streams to Bitcoin message streams.
use std::io::{Cursor, Read, Write};
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use bytes::BytesMut;
use chrono::{TimeZone, Utc};
use failure::Error;
use tokio::codec::{Decoder, Encoder};
use zebra_chain::{
serialization::{ReadZcashExt, WriteZcashExt},
types::{BlockHeight, Sha256dChecksum},
};
use crate::{constants, types::*, Network};
use super::message::Message;
/// A codec which produces Bitcoin messages from byte streams and vice versa.
pub struct Codec {
builder: Builder,
state: DecodeState,
}
/// A builder for specifying [`Codec`] options.
pub struct Builder {
/// The network magic to use in encoding.
network: Network,
/// The protocol version to speak when encoding/decoding.
version: Version,
/// The maximum allowable message length.
max_len: usize,
}
impl Codec {
/// Return a builder for constructing a [`Codec`].
///
/// # Example
/// ```
/// # use zebra_network::protocol::codec::Codec;
/// use zebra_network::{constants, Network};
///
/// let codec = Codec::builder()
/// .for_network(Network::Mainnet)
/// .for_version(constants::CURRENT_VERSION)
/// .with_max_body_len(4_000_000)
/// .finish();
/// ```
pub fn builder() -> Builder {
Builder {
network: Network::Mainnet,
version: constants::CURRENT_VERSION,
max_len: 4_000_000,
}
}
/// Reconfigure the version used by the codec, e.g., after completing a handshake.
pub fn reconfigure_version(&mut self, version: Version) {
self.builder.version = version;
}
}
impl Builder {
/// Finalize the builder and return a [`Codec`].
pub fn finish(self) -> Codec {
Codec {
builder: self,
state: DecodeState::Head,
}
}
/// Configure the codec for the given [`Network`].
pub fn for_network(mut self, network: Network) -> Self {
self.network = network;
self
}
/// Configure the codec for the given [`Version`].
pub fn for_version(mut self, version: Version) -> Self {
self.version = version;
self
}
/// Configure the codec's maximum accepted payload size, in bytes.
pub fn with_max_body_len(mut self, len: usize) -> Self {
self.max_len = len;
self
}
}
/// The length of a Bitcoin message header.
const HEADER_LEN: usize = 24usize;
// ======== Encoding =========
impl Codec {
/// Write the body of the message into the given writer. This allows writing
/// the message body prior to writing the header, so that the header can
/// contain a checksum of the message body.
fn write_body<W: Write>(&self, msg: &Message, mut writer: W) -> Result<(), Error> {
use Message::*;
match *msg {
Version {
ref version,
ref services,
ref timestamp,
ref address_recv,
ref address_from,
ref nonce,
ref user_agent,
ref start_height,
ref relay,
} => {
writer.write_u32::<LittleEndian>(version.0)?;
writer.write_u64::<LittleEndian>(services.0)?;
writer.write_i64::<LittleEndian>(timestamp.timestamp())?;
let (recv_services, recv_addr) = address_recv;
writer.write_u64::<LittleEndian>(recv_services.0)?;
writer.write_socket_addr(*recv_addr)?;
let (from_services, from_addr) = address_from;
writer.write_u64::<LittleEndian>(from_services.0)?;
writer.write_socket_addr(*from_addr)?;
writer.write_u64::<LittleEndian>(nonce.0)?;
writer.write_string(&user_agent)?;
writer.write_u32::<LittleEndian>(start_height.0)?;
writer.write_u8(*relay as u8)?;
}
Verack => { /* Empty payload -- no-op */ }
Ping(nonce) => {
writer.write_u64::<LittleEndian>(nonce.0)?;
}
Pong(nonce) => {
writer.write_u64::<LittleEndian>(nonce.0)?;
}
_ => bail!("unimplemented message type"),
}
Ok(())
}
}
impl Encoder for Codec {
type Item = Message;
type Error = Error;
#[instrument(skip(src))]
fn encode(&mut self, item: Self::Item, dst: &mut BytesMut) -> Result<(), Self::Error> {
// XXX(HACK): this is inefficient and does an extra allocation.
// instead, we should have a size estimator for the message, reserve
// that much space, write the header (with zeroed checksum), then the body,
// then write the computed checksum in-place. for now, just do an extra alloc.
let mut body = Vec::new();
self.write_body(&item, &mut body)?;
use Message::*;
// Note: because all match arms must have
// the same type, and the array length is
// part of the type, having at least one
// of length 12 checks that they are all
// of length 12, as they must be &[u8; 12].
let command = match item {
Version { .. } => b"version\0\0\0\0\0",
Verack { .. } => b"verack\0\0\0\0\0\0",
Ping { .. } => b"ping\0\0\0\0\0\0\0\0",
Pong { .. } => b"pong\0\0\0\0\0\0\0\0",
Reject { .. } => b"reject\0\0\0\0\0\0",
Addr { .. } => b"addr\0\0\0\0\0\0\0\0",
GetAddr { .. } => b"getaddr\0\0\0\0\0",
Block { .. } => b"block\0\0\0\0\0\0\0",
GetBlocks { .. } => b"getblocks\0\0\0",
Headers { .. } => b"headers\0\0\0\0\0",
GetHeaders { .. } => b"getheaders\0\0",
Inventory { .. } => b"inv\0\0\0\0\0\0\0\0\0", // XXX Inventory -> Inv ?
GetData { .. } => b"getdata\0\0\0\0\0",
NotFound { .. } => b"notfound\0\0\0\0",
Tx { .. } => b"tx\0\0\0\0\0\0\0\0\0\0",
Mempool { .. } => b"mempool\0\0\0\0\0",
FilterLoad { .. } => b"filterload\0\0",
FilterAdd { .. } => b"filteradd\0\0\0",
FilterClear { .. } => b"filterclear\0",
MerkleBlock { .. } => b"merkleblock\0",
};
trace!(?command, len = body.len());
// XXX this should write directly into the buffer,
// but leave it for now until we fix the issue above.
let mut header = [0u8; HEADER_LEN];
let mut header_writer = Cursor::new(&mut header[..]);
header_writer.write_all(&self.builder.network.magic().0)?;
header_writer.write_all(command)?;
header_writer.write_u32::<LittleEndian>(body.len() as u32)?;
header_writer.write_all(&Sha256dChecksum::from(&body[..]).0)?;
dst.reserve(HEADER_LEN + body.len());
dst.extend_from_slice(&header);
dst.extend_from_slice(&body);
Ok(())
}
}
// ======== Decoding =========
#[derive(Debug)]
enum DecodeState {
Head,
Body {
body_len: usize,
command: [u8; 12],
checksum: Sha256dChecksum,
},
}
impl Decoder for Codec {
type Item = Message;
type Error = Error;
#[instrument(skip(src))]
fn decode(&mut self, src: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
match self.state {
DecodeState::Head => {
// First check that the src buffer contains an entire header.
if src.len() < HEADER_LEN {
trace!(?self.state, "src buffer does not have an entire header, waiting");
// Signal that decoding requires more data.
return Ok(None);
}
// Now that we know that src contains a header, split off the header section.
let header = src.split_to(HEADER_LEN);
// Create a cursor over the header and parse its fields.
let mut header_reader = Cursor::new(&header);
let magic = Magic(header_reader.read_4_bytes()?);
let command = header_reader.read_12_bytes()?;
let body_len = header_reader.read_u32::<LittleEndian>()? as usize;
let checksum = Sha256dChecksum(header_reader.read_4_bytes()?);
trace!(?self.state, ?magic, ?command, body_len, ?checksum, "read header from src buffer");
ensure!(
magic == self.builder.network.magic(),
"supplied magic did not meet expectations"
);
ensure!(
body_len < self.builder.max_len,
"body length exceeded maximum size",
);
// Reserve buffer space for the expected body and the following header.
src.reserve(body_len + HEADER_LEN);
self.state = DecodeState::Body {
body_len,
command,
checksum,
};
// Now that the state is updated, recurse to attempt body decoding.
self.decode(src)
}
DecodeState::Body {
body_len,
command,
checksum,
} => {
if src.len() < body_len {
// Need to wait for the full body
trace!(?self.state, len = src.len(), "src buffer does not have an entire body, waiting");
return Ok(None);
}
// Now that we know we have the full body, split off the body,
// and reset the decoder state for the next message.
let body = src.split_to(body_len);
self.state = DecodeState::Head;
ensure!(
checksum == Sha256dChecksum::from(&body[..]),
"supplied message checksum does not match computed checksum"
);
let body_reader = Cursor::new(&body);
let v = self.builder.version;
match &command {
b"version\0\0\0\0\0" => try_read_version(body_reader, v),
b"verack\0\0\0\0\0\0" => try_read_verack(body_reader, v),
b"ping\0\0\0\0\0\0\0\0" => try_read_ping(body_reader, v),
b"pong\0\0\0\0\0\0\0\0" => try_read_pong(body_reader, v),
b"reject\0\0\0\0\0\0" => try_read_reject(body_reader, v),
b"addr\0\0\0\0\0\0\0\0" => try_read_addr(body_reader, v),
b"getaddr\0\0\0\0\0" => try_read_getaddr(body_reader, v),
b"block\0\0\0\0\0\0\0" => try_read_block(body_reader, v),
b"getblocks\0\0\0" => try_read_getblocks(body_reader, v),
b"headers\0\0\0\0\0" => try_read_headers(body_reader, v),
b"getheaders\0\0" => try_read_getheaders(body_reader, v),
b"inv\0\0\0\0\0\0\0\0\0" => try_read_inv(body_reader, v),
b"getdata\0\0\0\0\0" => try_read_getdata(body_reader, v),
b"notfound\0\0\0\0" => try_read_notfound(body_reader, v),
b"tx\0\0\0\0\0\0\0\0\0\0" => try_read_tx(body_reader, v),
b"mempool\0\0\0\0\0" => try_read_mempool(body_reader, v),
b"filterload\0\0" => try_read_filterload(body_reader, v),
b"filteradd\0\0\0" => try_read_filteradd(body_reader, v),
b"filterclear\0" => try_read_filterclear(body_reader, v),
b"merkleblock\0" => try_read_merkleblock(body_reader, v),
_ => bail!("unknown command"),
}
// We need Ok(Some(msg)) to signal that we're done decoding
.map(|msg| Some(msg))
}
}
}
}
fn try_read_version<R: Read>(mut reader: R, _parsing_version: Version) -> Result<Message, Error> {
Ok(Message::Version {
version: Version(reader.read_u32::<LittleEndian>()?),
services: Services(reader.read_u64::<LittleEndian>()?),
timestamp: Utc.timestamp(reader.read_i64::<LittleEndian>()?, 0),
address_recv: (
Services(reader.read_u64::<LittleEndian>()?),
reader.read_socket_addr()?,
),
address_from: (
Services(reader.read_u64::<LittleEndian>()?),
reader.read_socket_addr()?,
),
nonce: Nonce(reader.read_u64::<LittleEndian>()?),
user_agent: reader.read_string()?,
start_height: BlockHeight(reader.read_u32::<LittleEndian>()?),
relay: match reader.read_u8()? {
0 => false,
1 => true,
_ => bail!("non-bool value supplied in relay field"),
},
})
}
fn try_read_verack<R: Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
Ok(Message::Verack)
}
fn try_read_ping<R: Read>(mut reader: R, _version: Version) -> Result<Message, Error> {
Ok(Message::Ping(Nonce(reader.read_u64::<LittleEndian>()?)))
}
fn try_read_pong<R: Read>(mut reader: R, _version: Version) -> Result<Message, Error> {
Ok(Message::Pong(Nonce(reader.read_u64::<LittleEndian>()?)))
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_reject<R: Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("reject");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_addr<R: Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("addr");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_getaddr<R: Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("getaddr");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_block<R: Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("block");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_getblocks<R: Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("getblocks");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_headers<R: Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("headers");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_getheaders<R: Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("getheaders");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_inv<R: Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("inv");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_getdata<R: Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("getdata");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_notfound<R: Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("notfound");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_tx<R: Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("tx");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_mempool<R: Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("mempool");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_filterload<R: Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("filterload");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_filteradd<R: Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("filteradd");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_filterclear<R: Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("filterclear");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_merkleblock<R: Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("merkleblock");
bail!("unimplemented message type")
}
// XXX replace these interior unit tests with exterior integration tests + proptest
#[cfg(test)]
mod tests {
use super::*;
use tokio::runtime::Runtime;
#[test]
fn version_message_round_trip() {
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
let services = Services(0x1);
let timestamp = Utc.timestamp(1568000000, 0);
let rt = Runtime::new().unwrap();
let v = Message::Version {
version: crate::constants::CURRENT_VERSION,
services,
timestamp,
address_recv: (
services,
SocketAddr::new(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)), 8233),
),
address_from: (
services,
SocketAddr::new(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)), 8233),
),
nonce: Nonce(0x9082_4908_8927_9238),
user_agent: "Zebra".to_owned(),
start_height: BlockHeight(540_000),
relay: true,
};
use tokio::codec::{FramedRead, FramedWrite};
use tokio::prelude::*;
let v_bytes = rt.block_on(async {
let mut bytes = Vec::new();
{
let mut fw = FramedWrite::new(&mut bytes, Codec::builder().finish());
fw.send(v.clone())
.await
.expect("message should be serialized");
}
bytes
});
let v_parsed = rt.block_on(async {
let mut fr = FramedRead::new(Cursor::new(&v_bytes), Codec::builder().finish());
fr.next()
.await
.expect("a next message should be available")
.expect("that message should deserialize")
});
assert_eq!(v, v_parsed);
}
}

View File

@ -1,18 +1,10 @@
//! Definitions of network messages.
use std::io::{self, Cursor, Read, Write};
use std::net;
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use chrono::{DateTime, TimeZone, Utc};
use failure::Error;
use tokio::io::{AsyncRead, AsyncReadExt, AsyncWrite, AsyncWriteExt};
use chrono::{DateTime, Utc};
use zebra_chain::{
serialization::{ReadZcashExt, WriteZcashExt, ZcashDeserialize, ZcashSerialize},
transaction::Transaction,
types::{BlockHeight, Sha256dChecksum},
};
use zebra_chain::{transaction::Transaction, types::BlockHeight};
use crate::meta_addr::MetaAddr;
use crate::types::*;
@ -271,388 +263,3 @@ pub enum RejectReason {
InsufficientFee = 0x42,
Checkpoint = 0x43,
}
// Q: how do we want to implement serialization, exactly? do we want to have
// something generic over stdlib Read and Write traits, or over async versions
// of those traits?
//
// Note: because of the way the message structure is defined (checksum comes
// first) we can't write the message headers before collecting the whole body
// into a buffer
//
// Maybe just write some functions and refactor later?
impl Message {
/// Send `self` to the given async writer (e.g., a network stream).
#[instrument(level = "debug", skip(writer))]
pub async fn send<W: Unpin + AsyncWrite>(
&self,
mut writer: W,
magic: Magic,
version: Version,
) -> Result<(), Error> {
// Because the header contains a checksum of
// the body data, it must be written first.
let mut body = Vec::new();
self.write_body(&mut body, magic, version)?;
use Message::*;
// Note: because all match arms must have
// the same type, and the array length is
// part of the type, having at least one
// of length 12 checks that they are all
// of length 12, as they must be &[u8; 12].
let command = match *self {
Version { .. } => b"version\0\0\0\0\0",
Verack { .. } => b"verack\0\0\0\0\0\0",
Ping { .. } => b"ping\0\0\0\0\0\0\0\0",
Pong { .. } => b"pong\0\0\0\0\0\0\0\0",
Reject { .. } => b"reject\0\0\0\0\0\0",
Addr { .. } => b"addr\0\0\0\0\0\0\0\0",
GetAddr { .. } => b"getaddr\0\0\0\0\0",
Block { .. } => b"block\0\0\0\0\0\0\0",
GetBlocks { .. } => b"getblocks\0\0\0",
Headers { .. } => b"headers\0\0\0\0\0",
GetHeaders { .. } => b"getheaders\0\0",
Inventory { .. } => b"inv\0\0\0\0\0\0\0\0\0",
GetData { .. } => b"getdata\0\0\0\0\0",
NotFound { .. } => b"notfound\0\0\0\0",
Tx { .. } => b"tx\0\0\0\0\0\0\0\0\0\0",
Mempool { .. } => b"mempool\0\0\0\0\0",
FilterLoad { .. } => b"filterload\0\0",
FilterAdd { .. } => b"filteradd\0\0\0",
FilterClear { .. } => b"filterclear\0",
MerkleBlock { .. } => b"merkleblock\0",
};
// Write the header into a stack buffer first before feeding that stack
// buffer into the async writer. This allows using the WriteBytesExt
// extension trait, which is only defined for sync Writers.
// The header is 4+12+4+4=24 bytes long.
trace!(?command, body_len = body.len());
let mut header = [0u8; 24];
let mut header_writer = Cursor::new(&mut header[..]);
header_writer.write_all(&magic.0)?;
header_writer.write_all(command)?;
header_writer.write_u32::<LittleEndian>(body.len() as u32)?;
header_writer.write_all(&Sha256dChecksum::from(&body[..]).0)?;
writer.write_all(&header).await?;
writer.write_all(&body).await?;
Ok(())
}
/// Receive a message from the given async reader (e.g., a network stream).
#[instrument(level = "debug", skip(reader))]
pub async fn recv<R: Unpin + AsyncRead>(
mut reader: R,
magic: Magic,
version: Version,
) -> Result<Self, Error> {
// Read the header into a stack buffer before trying to parse it. This
// allows using the ReadBytesExt extension trait, which is only defined
// for sync Readers. Then we can determine the expected message length,
// await that many bytes, and finally parse the message.
// The header is 4+12+4+4=24 bytes long.
let header = {
let mut bytes = [0u8; 24];
reader.read_exact(&mut bytes).await?;
bytes
};
let mut header_reader = Cursor::new(&header[..]);
// Read header data
let message_magic = Magic(header_reader.read_4_bytes()?);
let command = header_reader.read_12_bytes()?;
let body_len = header_reader.read_u32::<LittleEndian>()? as usize;
let checksum = Sha256dChecksum(header_reader.read_4_bytes()?);
trace!(?message_magic, ?command, body_len, ?checksum);
ensure!(
magic == message_magic,
"supplied magic did not meet expectations",
);
// XXX bound the body_len value to avoid large attacker-controlled allocs
// XXX add a ChecksumReader<R: Read>(R) wrapper and avoid this
let body = {
let mut bytes = vec![0; body_len];
reader.read_exact(&mut bytes).await?;
bytes
};
ensure!(
checksum == Sha256dChecksum::from(&body[..]),
"supplied message checksum does not match computed checksum"
);
let body_reader = Cursor::new(&body);
match &command {
b"version\0\0\0\0\0" => try_read_version(body_reader, version),
b"verack\0\0\0\0\0\0" => try_read_verack(body_reader, version),
b"ping\0\0\0\0\0\0\0\0" => try_read_ping(body_reader, version),
b"pong\0\0\0\0\0\0\0\0" => try_read_pong(body_reader, version),
b"reject\0\0\0\0\0\0" => try_read_reject(body_reader, version),
b"addr\0\0\0\0\0\0\0\0" => try_read_addr(body_reader, version),
b"getaddr\0\0\0\0\0" => try_read_getaddr(body_reader, version),
b"block\0\0\0\0\0\0\0" => try_read_block(body_reader, version),
b"getblocks\0\0\0" => try_read_getblocks(body_reader, version),
b"headers\0\0\0\0\0" => try_read_headers(body_reader, version),
b"getheaders\0\0" => try_read_getheaders(body_reader, version),
b"inv\0\0\0\0\0\0\0\0\0" => try_read_inv(body_reader, version),
b"getdata\0\0\0\0\0" => try_read_getdata(body_reader, version),
b"notfound\0\0\0\0" => try_read_notfound(body_reader, version),
b"tx\0\0\0\0\0\0\0\0\0\0" => try_read_tx(body_reader, version),
b"mempool\0\0\0\0\0" => try_read_mempool(body_reader, version),
b"filterload\0\0" => try_read_filterload(body_reader, version),
b"filteradd\0\0\0" => try_read_filteradd(body_reader, version),
b"filterclear\0" => try_read_filterclear(body_reader, version),
b"merkleblock\0" => try_read_merkleblock(body_reader, version),
_ => bail!("unknown command"),
}
}
}
impl Message {
/// Write the body of the message into the given writer. This allows writing
/// the message body prior to writing the header, so that the header can
/// contain a checksum of the message body.
fn write_body<W: io::Write>(&self, mut writer: W, _m: Magic, _v: Version) -> Result<(), Error> {
use Message::*;
trace!(?self);
match *self {
Version {
ref version,
ref services,
ref timestamp,
ref address_recv,
ref address_from,
ref nonce,
ref user_agent,
ref start_height,
ref relay,
} => {
writer.write_u32::<LittleEndian>(version.0)?;
writer.write_u64::<LittleEndian>(services.0)?;
writer.write_i64::<LittleEndian>(timestamp.timestamp())?;
let (recv_services, recv_addr) = address_recv;
writer.write_u64::<LittleEndian>(recv_services.0)?;
writer.write_socket_addr(*recv_addr)?;
let (from_services, from_addr) = address_from;
writer.write_u64::<LittleEndian>(from_services.0)?;
writer.write_socket_addr(*from_addr)?;
writer.write_u64::<LittleEndian>(nonce.0)?;
writer.write_string(&user_agent)?;
writer.write_u32::<LittleEndian>(start_height.0)?;
writer.write_u8(*relay as u8)?;
}
Verack => { /* Empty payload -- no-op */ }
Ping(nonce) => {
writer.write_u64::<LittleEndian>(nonce.0)?;
}
Pong(nonce) => {
writer.write_u64::<LittleEndian>(nonce.0)?;
}
_ => bail!("unimplemented message type"),
}
Ok(())
}
}
fn try_read_version<R: io::Read>(
mut reader: R,
_parsing_version: Version,
) -> Result<Message, Error> {
Ok(Message::Version {
version: Version(reader.read_u32::<LittleEndian>()?),
services: Services(reader.read_u64::<LittleEndian>()?),
timestamp: Utc.timestamp(reader.read_i64::<LittleEndian>()?, 0),
address_recv: (
Services(reader.read_u64::<LittleEndian>()?),
reader.read_socket_addr()?,
),
address_from: (
Services(reader.read_u64::<LittleEndian>()?),
reader.read_socket_addr()?,
),
nonce: Nonce(reader.read_u64::<LittleEndian>()?),
user_agent: reader.read_string()?,
start_height: BlockHeight(reader.read_u32::<LittleEndian>()?),
relay: match reader.read_u8()? {
0 => false,
1 => true,
_ => bail!("non-bool value supplied in relay field"),
},
})
}
fn try_read_verack<R: io::Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
Ok(Message::Verack)
}
fn try_read_ping<R: io::Read>(mut reader: R, _version: Version) -> Result<Message, Error> {
Ok(Message::Ping(Nonce(reader.read_u64::<LittleEndian>()?)))
}
fn try_read_pong<R: io::Read>(mut reader: R, _version: Version) -> Result<Message, Error> {
Ok(Message::Pong(Nonce(reader.read_u64::<LittleEndian>()?)))
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_reject<R: io::Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("reject");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_addr<R: io::Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("addr");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_getaddr<R: io::Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("getaddr");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_block<R: io::Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("block");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_getblocks<R: io::Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("getblocks");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_headers<R: io::Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("headers");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_getheaders<R: io::Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("getheaders");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_inv<R: io::Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("inv");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_getdata<R: io::Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("getdata");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_notfound<R: io::Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("notfound");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_tx<R: io::Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("tx");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_mempool<R: io::Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("mempool");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_filterload<R: io::Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("filterload");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_filteradd<R: io::Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("filteradd");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_filterclear<R: io::Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("filterclear");
bail!("unimplemented message type")
}
#[instrument(level = "trace", skip(_reader, _version))]
fn try_read_merkleblock<R: io::Read>(mut _reader: R, _version: Version) -> Result<Message, Error> {
trace!("merkleblock");
bail!("unimplemented message type")
}
#[cfg(test)]
mod tests {
use super::*;
use tokio::runtime::Runtime;
#[test]
fn version_message_round_trip() {
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
let services = Services(0x1);
let timestamp = Utc.timestamp(1568000000, 0);
let rt = Runtime::new().unwrap();
let v = Message::Version {
version: crate::constants::CURRENT_VERSION,
services,
timestamp,
address_recv: (
services,
SocketAddr::new(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)), 8233),
),
address_from: (
services,
SocketAddr::new(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)), 8233),
),
nonce: Nonce(0x9082_4908_8927_9238),
user_agent: "Zebra".to_owned(),
start_height: BlockHeight(540_000),
relay: true,
};
let v_bytes = rt.block_on(async {
let mut bytes = Vec::new();
v.send(
&mut bytes,
crate::constants::magics::MAINNET,
crate::constants::CURRENT_VERSION,
)
.await
.unwrap();
bytes
});
let v_parsed = rt.block_on(async {
Message::recv(
Cursor::new(&v_bytes),
crate::constants::magics::MAINNET,
crate::constants::CURRENT_VERSION,
)
.await
.unwrap()
});
assert_eq!(v, v_parsed);
}
}

View File

@ -26,7 +26,18 @@ impl Runnable for ConnectCmd {
// Combine the connect future with an infinite wait
// so that the program has to be explicitly killed and
// won't die before all tracing messages are written.
let fut = futures_util::future::join(self.connect(), wait);
let fut = futures_util::future::join(
async {
match self.connect().await {
Ok(()) => {}
Err(e) => {
// Print any error that occurs.
error!(?e);
}
}
},
wait,
);
let _ = app_reader()
.state()
@ -43,14 +54,22 @@ impl ConnectCmd {
use std::net::Shutdown;
use chrono::Utc;
use tokio::net::TcpStream;
use tokio::{codec::Framed, net::TcpStream, prelude::*};
use zebra_chain::types::BlockHeight;
use zebra_network::{constants, protocol::message::*, types::*};
use zebra_network::{
constants,
protocol::{codec::*, message::*},
types::*,
Network,
};
info!("connecting");
let mut stream = TcpStream::connect(self.addr).await?;
let mut stream = Framed::new(
TcpStream::connect(self.addr).await?,
Codec::builder().for_network(Network::Mainnet).finish(),
);
let version = Message::Version {
version: constants::CURRENT_VERSION,
@ -69,55 +88,22 @@ impl ConnectCmd {
info!(version = ?version);
version
.send(
&mut stream,
constants::magics::MAINNET,
constants::CURRENT_VERSION,
)
.await?;
stream.send(version).await?;
let resp_version: Message = stream.next().await.expect("expected data")?;
let resp_version = Message::recv(
&mut stream,
constants::magics::MAINNET,
constants::CURRENT_VERSION,
)
.await?;
info!(resp_version = ?resp_version);
Message::Verack
.send(
&mut stream,
constants::magics::MAINNET,
constants::CURRENT_VERSION,
)
.await?;
stream.send(Message::Verack).await?;
let resp_verack = Message::recv(
&mut stream,
constants::magics::MAINNET,
constants::CURRENT_VERSION,
)
.await?;
let resp_verack = stream.next().await.expect("expected data")?;
info!(resp_verack = ?resp_verack);
loop {
match Message::recv(
&mut stream,
constants::magics::MAINNET,
constants::CURRENT_VERSION,
)
.await
{
while let Some(maybe_msg) = stream.next().await {
match maybe_msg {
Ok(msg) => match msg {
Message::Ping(nonce) => {
let pong = Message::Pong(nonce);
pong.send(
&mut stream,
constants::magics::MAINNET,
constants::CURRENT_VERSION,
)
.await?;
stream.send(Message::Pong(nonce)).await?;
}
_ => warn!("Unknown message"),
},
@ -125,8 +111,6 @@ impl ConnectCmd {
};
}
stream.shutdown(Shutdown::Both)?;
Ok(())
}
}

View File

@ -10,6 +10,8 @@
#[macro_use]
extern crate tracing;
#[macro_use]
extern crate failure;
mod components;