//! Note Commitment Trees. //! //! A note commitment tree is an incremental Merkle tree of fixed depth //! used to store note commitments that Action //! transfers produce. Just as the unspent transaction output set (UTXO //! set) used in Bitcoin, it is used to express the existence of value and //! the capability to spend it. However, unlike the UTXO set, it is not //! the job of this tree to protect against double-spending, as it is //! append-only. //! //! A root of a note commitment tree is associated with each treestate. #![allow(clippy::unit_arg)] #![allow(clippy::derive_hash_xor_eq)] #![allow(dead_code)] use std::{ convert::TryFrom, fmt, hash::{Hash, Hasher}, io, }; use bitvec::prelude::*; use halo2::{arithmetic::FieldExt, pasta::pallas}; use incrementalmerkletree::{bridgetree, Frontier}; use lazy_static::lazy_static; use thiserror::Error; use super::sinsemilla::*; use crate::serialization::{ serde_helpers, ReadZcashExt, SerializationError, ZcashDeserialize, ZcashSerialize, }; pub(super) const MERKLE_DEPTH: usize = 32; /// MerkleCRH^Orchard Hash Function /// /// Used to hash incremental Merkle tree hash values for Orchard. /// /// MerkleCRH^Orchard: {0..MerkleDepth^Orchard āˆ’ 1} Ɨ Pš‘„ Ɨ Pš‘„ ā†’ Pš‘„ /// /// MerkleCRH^Orchard(layer, left, right) := 0 if hash == āŠ„; hash otherwise /// /// where hash = SinsemillaHash("z.cash:Orchard-MerkleCRH", l || left || right), /// l = I2LEBSP_10(MerkleDepth^Orchard āˆ’ 1 āˆ’ layer), and left, right, and /// the output are the x-coordinates of Pallas affine points. /// /// https://zips.z.cash/protocol/protocol.pdf#orchardmerklecrh /// https://zips.z.cash/protocol/protocol.pdf#constants fn merkle_crh_orchard(layer: u8, left: pallas::Base, right: pallas::Base) -> pallas::Base { let mut s = bitvec![Lsb0, u8;]; // Prefix: l = I2LEBSP_10(MerkleDepth^Orchard āˆ’ 1 āˆ’ layer) let l = MERKLE_DEPTH - 1 - layer as usize; s.extend_from_bitslice(&BitArray::::from([l, 0])[0..10]); s.extend_from_bitslice(&BitArray::::from(left.to_bytes())[0..255]); s.extend_from_bitslice(&BitArray::::from(right.to_bytes())[0..255]); match sinsemilla_hash(b"z.cash:Orchard-MerkleCRH", &s) { Some(h) => h, None => pallas::Base::zero(), } } lazy_static! { /// List of "empty" Orchard note commitment nodes, one for each layer. /// /// The list is indexed by the layer number (0: root; MERKLE_DEPTH: leaf). /// /// https://zips.z.cash/protocol/protocol.pdf#constants pub(super) static ref EMPTY_ROOTS: Vec = { // The empty leaf node. This is layer 32. let mut v = vec![NoteCommitmentTree::uncommitted()]; // Starting with layer 31 (the first internal layer, after the leaves), // generate the empty roots up to layer 0, the root. for layer in (0..MERKLE_DEPTH).rev() { // The vector is generated from the end, pushing new nodes to its beginning. // For this reason, the layer below is v[0]. let next = merkle_crh_orchard(layer as u8, v[0], v[0]); v.insert(0, next); } v }; } /// Orchard note commitment tree root node hash. /// /// The root hash in LEBS2OSP256(rt) encoding of the Orchard note commitment /// tree corresponding to the final Orchard treestate of this block. A root of a /// note commitment tree is associated with each treestate. #[derive(Clone, Copy, Default, Eq, PartialEq, Serialize, Deserialize)] pub struct Root(#[serde(with = "serde_helpers::Base")] pub(crate) pallas::Base); impl fmt::Debug for Root { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("Root") .field(&hex::encode(&self.0.to_bytes())) .finish() } } impl From for [u8; 32] { fn from(root: Root) -> Self { root.0.into() } } impl From<&Root> for [u8; 32] { fn from(root: &Root) -> Self { (*root).into() } } impl Hash for Root { fn hash(&self, state: &mut H) { self.0.to_bytes().hash(state) } } impl TryFrom<[u8; 32]> for Root { type Error = SerializationError; fn try_from(bytes: [u8; 32]) -> Result { let possible_point = pallas::Base::from_bytes(&bytes); if possible_point.is_some().into() { Ok(Self(possible_point.unwrap())) } else { Err(SerializationError::Parse( "Invalid pallas::Base value for Orchard note commitment tree root", )) } } } impl ZcashSerialize for Root { fn zcash_serialize(&self, mut writer: W) -> Result<(), io::Error> { writer.write_all(&<[u8; 32]>::from(*self)[..])?; Ok(()) } } impl ZcashDeserialize for Root { fn zcash_deserialize(mut reader: R) -> Result { Self::try_from(reader.read_32_bytes()?) } } /// A node of the Orchard Incremental Note Commitment Tree. #[derive(Clone, Debug)] struct Node(pallas::Base); impl incrementalmerkletree::Hashable for Node { fn empty_leaf() -> Self { Self(NoteCommitmentTree::uncommitted()) } /// Combine two nodes to generate a new node in the given level. /// Level 0 is the layer above the leaves (layer 31). /// Level 31 is the root (layer 0). fn combine(level: incrementalmerkletree::Altitude, a: &Self, b: &Self) -> Self { let layer = (MERKLE_DEPTH - 1) as u8 - u8::from(level); Self(merkle_crh_orchard(layer, a.0, b.0)) } /// Return the node for the level below the given level. (A quirk of the API) fn empty_root(level: incrementalmerkletree::Altitude) -> Self { let layer_below: usize = MERKLE_DEPTH - usize::from(level); Self(EMPTY_ROOTS[layer_below]) } } impl From for Node { fn from(x: pallas::Base) -> Self { Node(x) } } impl serde::Serialize for Node { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer, { self.0.to_bytes().serialize(serializer) } } impl<'de> serde::Deserialize<'de> for Node { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { let bytes = <[u8; 32]>::deserialize(deserializer)?; Option::::from(pallas::Base::from_bytes(&bytes)) .map(Node) .ok_or_else(|| serde::de::Error::custom("invalid Pallas field element")) } } #[allow(dead_code, missing_docs)] #[derive(Error, Debug, PartialEq, Eq)] pub enum NoteCommitmentTreeError { #[error("The note commitment tree is full")] FullTree, } /// Orchard Incremental Note Commitment Tree #[derive(Clone, Debug, Serialize, Deserialize)] pub struct NoteCommitmentTree { /// The tree represented as a Frontier. /// /// A Frontier is a subset of the tree that allows to fully specify it. /// It consists of nodes along the rightmost (newer) branch of the tree that /// has non-empty nodes. Upper (near root) empty nodes of the branch are not /// stored. inner: bridgetree::Frontier, } impl NoteCommitmentTree { /// Adds a note commitment x-coordinate to the tree. /// /// The leaves of the tree are actually a base field element, the /// x-coordinate of the commitment, the data that is actually stored on the /// chain and input into the proof. /// /// Returns an error if the tree is full. pub fn append(&mut self, cm_x: pallas::Base) -> Result<(), NoteCommitmentTreeError> { if self.inner.append(&cm_x.into()) { Ok(()) } else { Err(NoteCommitmentTreeError::FullTree) } } /// Returns the current root of the tree, used as an anchor in Orchard /// shielded transactions. pub fn root(&self) -> Root { Root(self.inner.root().0) } /// Get the Pallas-based Sinsemilla hash / root node of this merkle tree of /// note commitments. pub fn hash(&self) -> [u8; 32] { self.root().into() } /// An as-yet unused Orchard note commitment tree leaf node. /// /// Distinct for Orchard, a distinguished hash value of: /// /// Uncommitted^Orchard = I2LEBSP_l_MerkleOrchard(2) pub fn uncommitted() -> pallas::Base { pallas::Base::one().double() } /// Count of note commitments added to the tree. /// /// For Orchard, the tree is capped at 2^32. pub fn count(&self) -> u64 { self.inner .position() .map_or(0, |pos| usize::from(pos) as u64 + 1) } } impl Default for NoteCommitmentTree { fn default() -> Self { Self { inner: bridgetree::Frontier::new(), } } } impl Eq for NoteCommitmentTree {} impl PartialEq for NoteCommitmentTree { fn eq(&self, other: &Self) -> bool { self.hash() == other.hash() } } impl From> for NoteCommitmentTree { /// Compute the tree from a whole bunch of note commitments at once. fn from(values: Vec) -> Self { let mut tree = Self::default(); if values.is_empty() { return tree; } for cm_x in values { let _ = tree.append(cm_x); } tree } }