zebra/zebra-chain/src/orchard/sinsemilla.rs

248 lines
8.0 KiB
Rust
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! Sinsemilla hash functions and helpers.
use bitvec::prelude::*;
use halo2::{
arithmetic::{Coordinates, CurveAffine, CurveExt},
pasta::{group::Group, pallas},
};
/// [Coordinate Extractor for Pallas][concreteextractorpallas]
///
/// ExtractP: P → P𝑥 such that ExtractP(𝑃) = 𝑥(𝑃) mod 𝑞P.
///
/// ExtractP returns the type P𝑥 which is precise for its range, unlike
/// ExtractJ(𝑟) which returns a bit sequence.
///
/// [concreteextractorpallas]: https://zips.z.cash/protocol/nu5.pdf#concreteextractorpallas
pub fn extract_p(point: pallas::Point) -> pallas::Base {
let option: Option<Coordinates<pallas::Affine>> =
pallas::Affine::from(point).coordinates().into();
match option {
// If Some, it's not the identity.
Some(coordinates) => *coordinates.x(),
_ => pallas::Base::zero(),
}
}
/// Extract⊥ P: P {⊥} → P𝑥 {⊥} such that
///
/// Extract⊥ P(︀⊥) = ⊥
/// Extract⊥ P(𝑃: P) = ExtractP(𝑃).
///
/// <https://zips.z.cash/protocol/nu5.pdf#concreteextractorpallas>
pub fn extract_p_bottom(maybe_point: Option<pallas::Point>) -> Option<pallas::Base> {
// Maps an Option<T> to Option<U> by applying a function to a contained value.
maybe_point.map(extract_p)
}
/// GroupHash into Pallas, aka _GroupHash^P_
///
/// Produces a random point in the Pallas curve. The first input element acts
/// as a domain separator to distinguish uses of the group hash for different
/// purposes; the second input element is the message.
///
/// <https://zips.z.cash/protocol/nu5.pdf#concretegrouphashpallasandvesta>
#[allow(non_snake_case)]
pub fn pallas_group_hash(D: &[u8], M: &[u8]) -> pallas::Point {
let domain_separator = std::str::from_utf8(D).unwrap();
pallas::Point::hash_to_curve(domain_separator)(M)
}
/// Q(D) := GroupHash^P(“z.cash:SinsemillaQ”, D)
///
/// <https://zips.z.cash/protocol/nu5.pdf#concretesinsemillahash>
#[allow(non_snake_case)]
fn Q(D: &[u8]) -> pallas::Point {
pallas_group_hash(b"z.cash:SinsemillaQ", D)
}
/// S(j) := GroupHash^P(“z.cash:SinsemillaS”, LEBS2OSP32(I2LEBSP32(j)))
///
/// S: {0 .. 2^k - 1} -> P^*, aka 10 bits hashed into the group
///
/// <https://zips.z.cash/protocol/nu5.pdf#concretesinsemillahash>
#[allow(non_snake_case)]
fn S(j: &BitSlice<u8, Lsb0>) -> pallas::Point {
// The value of j is a 10-bit value, therefore must never exceed 2^10 in
// value.
assert_eq!(j.len(), 10);
// I2LEOSP_32(𝑗)
let mut leosp_32_j = [0u8; 4];
leosp_32_j[..2].copy_from_slice(j.to_bitvec().as_raw_slice());
pallas_group_hash(b"z.cash:SinsemillaS", &leosp_32_j)
}
/// Incomplete addition on the Pallas curve.
///
/// P {⊥} × P {⊥} → P {⊥}
///
/// <https://zips.z.cash/protocol/protocol.pdf#concretesinsemillahash>
fn incomplete_addition(
left: Option<pallas::Point>,
right: Option<pallas::Point>,
) -> Option<pallas::Point> {
let identity = pallas::Point::identity();
match (left, right) {
(None, _) | (_, None) => None,
(Some(l), _) if l == identity => None,
(_, Some(r)) if r == identity => None,
(Some(l), Some(r)) if l == r => None,
// The inverse of l, (x, -y)
(Some(l), Some(r)) if l == -r => None,
(Some(l), Some(r)) => Some(l + r),
}
}
/// "...an algebraic hash function with collision resistance (for fixed input
/// length) derived from assumed hardness of the Discrete Logarithm Problem on
/// the Pallas curve."
///
/// SinsemillaHash is used in the definitions of Sinsemilla commitments and of
/// the Sinsemilla hash for the Orchard incremental Merkle tree (§ 5.4.1.3
/// MerkleCRH^Orchard Hash Function).
///
/// SinsemillaHashToPoint(𝐷: B^Y^\[N\] , 𝑀 : B ^[{0 .. 𝑘·𝑐}] ) → P {⊥}
///
/// <https://zips.z.cash/protocol/nu5.pdf#concretesinsemillahash>
///
/// # Panics
///
/// If `M` is greater than `k*c = 2530` bits.
#[allow(non_snake_case)]
pub fn sinsemilla_hash_to_point(D: &[u8], M: &BitVec<u8, Lsb0>) -> Option<pallas::Point> {
let k = 10;
let c = 253;
assert!(M.len() <= k * c);
let mut acc = Some(Q(D));
// Split M into n segments of k bits, where k = 10 and c = 253, padding
// the last segment with zeros.
//
// https://zips.z.cash/protocol/nu5.pdf#concretesinsemillahash
for chunk in M.chunks(k) {
// Pad each chunk with zeros.
let mut store = [0u8; 2];
let bits = BitSlice::<_, Lsb0>::from_slice_mut(&mut store);
bits[..chunk.len()].copy_from_bitslice(chunk);
acc = incomplete_addition(incomplete_addition(acc, Some(S(&bits[..k]))), acc);
}
acc
}
/// Sinsemilla Hash Function
///
/// "SinsemillaHash is an algebraic hash function with collision resistance (for
/// fixed input length) derived from assumed hardness of the Discrete Logarithm
/// Problem. It is designed by Sean Bowe and Daira Hopwood. The motivation for
/// introducing a new discrete-log-based hash function (rather than using
/// PedersenHash) is to make efcient use of the lookups available in recent
/// proof systems including Halo 2."
///
/// SinsemillaHash: B^Y^\[N\] × B[{0 .. 𝑘·𝑐}] → P_𝑥 {⊥}
///
/// <https://zips.z.cash/protocol/nu5.pdf#concretesinsemillahash>
///
/// # Panics
///
/// If `M` is greater than `k*c = 2530` bits in `sinsemilla_hash_to_point`.
#[allow(non_snake_case)]
pub fn sinsemilla_hash(D: &[u8], M: &BitVec<u8, Lsb0>) -> Option<pallas::Base> {
extract_p_bottom(sinsemilla_hash_to_point(D, M))
}
#[cfg(test)]
mod tests {
use super::*;
use crate::orchard::tests::vectors;
#[cfg(test)]
fn x_from_str(s: &str) -> pallas::Base {
use halo2::pasta::group::ff::PrimeField;
pallas::Base::from_str_vartime(s).unwrap()
}
#[test]
#[allow(non_snake_case)]
fn sinsemilla_single_test_vector() {
use halo2::pasta::group::Curve;
let D = b"z.cash:test-Sinsemilla";
let M = bitvec![
u8, Lsb0; 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0,
1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0,
];
let test_vector = pallas::Affine::from_xy(
x_from_str(
"19681977528872088480295086998934490146368213853811658798708435106473481753752",
),
x_from_str(
"14670850419772526047574141291705097968771694788047376346841674072293161339903",
),
)
.unwrap();
assert_eq!(
sinsemilla_hash_to_point(&D[..], &M).expect("").to_affine(),
test_vector
)
}
// Checks Sinsemilla hashes to point and to bytes (aka the x-coordinate
// bytes of a point) with:
// - One of two domains.
// - Random message lengths between 0 and 255 bytes.
// - Random message bits.
#[test]
#[allow(non_snake_case)]
fn sinsemilla_hackworks_test_vectors() {
use halo2::pasta::group::{ff::PrimeField, GroupEncoding};
for tv in tests::vectors::SINSEMILLA.iter() {
let D = tv.domain.as_slice();
let M: &BitVec<u8, Lsb0> = &tv.msg.iter().collect();
assert_eq!(
sinsemilla_hash_to_point(D, M).expect("should not fail per Theorem 5.4.4"),
pallas::Point::from_bytes(&tv.point).unwrap()
);
assert_eq!(
sinsemilla_hash(D, M).expect("should not fail per Theorem 5.4.4"),
pallas::Base::from_repr(tv.hash).unwrap()
)
}
}
// Checks Pallas group hashes with:
// - One of two domains.
// - Random message lengths between 0 and 255 bytes.
// - Random message contents.
#[test]
#[allow(non_snake_case)]
fn sinsemilla_hackworks_group_hash_test_vectors() {
use halo2::pasta::group::GroupEncoding;
for tv in tests::vectors::GROUP_HASHES.iter() {
let D = tv.domain.as_slice();
let M = tv.msg.as_slice();
assert_eq!(
pallas_group_hash(D, M),
pallas::Point::from_bytes(&tv.point).unwrap()
);
}
}
}