zebra/zebra-chain/src/block/tests/vectors.rs

474 lines
15 KiB
Rust

use std::{
collections::HashSet,
io::{Cursor, Write},
};
use chrono::{DateTime, Duration, LocalResult, TimeZone, Utc};
use crate::{
block::{
serialize::MAX_BLOCK_BYTES, Block, BlockTimeError, Commitment::*, Hash, Header, Height,
},
parameters::{
Network::{self, *},
NetworkUpgrade::*,
},
serialization::{
sha256d, SerializationError, ZcashDeserialize, ZcashDeserializeInto, ZcashSerialize,
},
transaction::LockTime,
};
use super::generate; // TODO: this should be rewritten as strategies
#[test]
fn blockheaderhash_debug() {
let _init_guard = zebra_test::init();
let preimage = b"foo bar baz";
let mut sha_writer = sha256d::Writer::default();
let _ = sha_writer.write_all(preimage);
let hash = Hash(sha_writer.finish());
assert_eq!(
format!("{hash:?}"),
"block::Hash(\"3166411bd5343e0b284a108f39a929fbbb62619784f8c6dafe520703b5b446bf\")"
);
}
#[test]
fn blockheaderhash_from_blockheader() {
let _init_guard = zebra_test::init();
let (blockheader, _blockheader_bytes) = generate::block_header();
let hash = Hash::from(&blockheader);
assert_eq!(
format!("{hash:?}"),
"block::Hash(\"d1d6974bbe1d4d127c889119b2fc05724c67588dc72708839727586b8c2bc939\")"
);
let mut bytes = Cursor::new(Vec::new());
blockheader
.zcash_serialize(&mut bytes)
.expect("these bytes to serialize from a blockheader without issue");
bytes.set_position(0);
let other_header = bytes
.zcash_deserialize_into()
.expect("these bytes to deserialize into a blockheader without issue");
assert_eq!(blockheader, other_header);
}
#[test]
fn blockheader_serialization() {
let _init_guard = zebra_test::init();
// Includes the 32-byte nonce and 3-byte equihash length field.
const BLOCK_HEADER_LENGTH: usize = crate::work::equihash::Solution::INPUT_LENGTH
+ 32
+ 3
+ crate::work::equihash::SOLUTION_SIZE;
for block in zebra_test::vectors::BLOCKS.iter() {
// successful deserialization
let header_bytes = &block[..BLOCK_HEADER_LENGTH];
let mut header = header_bytes
.zcash_deserialize_into::<Header>()
.expect("blockheader test vector should deserialize");
// successful serialization
let _serialized_header = header
.zcash_serialize_to_vec()
.expect("blockheader test vector should serialize");
// deserialiation errors
let header_bytes = [&[255; 4], &header_bytes[4..]].concat();
let deserialization_err = header_bytes
.zcash_deserialize_into::<Header>()
.expect_err("blockheader test vector should fail to deserialize");
let SerializationError::Parse(err_msg) = deserialization_err else {
panic!("SerializationError variant should be Parse")
};
assert_eq!(err_msg, "high bit was set in version field");
let header_bytes = [&[0; 4], &header_bytes[4..]].concat();
let deserialization_err = header_bytes
.zcash_deserialize_into::<Header>()
.expect_err("blockheader test vector should fail to deserialize");
let SerializationError::Parse(err_msg) = deserialization_err else {
panic!("SerializationError variant should be Parse")
};
assert_eq!(err_msg, "version must be at least 4");
// serialiation errors
header.version = u32::MAX;
let serialization_err = header
.zcash_serialize_to_vec()
.expect_err("blockheader test vector with modified version should fail to serialize");
assert_eq!(
serialization_err.kind(),
std::io::ErrorKind::Other,
"error kind should be Other"
);
let err_msg = serialization_err
.into_inner()
.expect("there should be an inner error");
assert_eq!(err_msg.to_string(), "high bit was set in version field");
}
}
#[test]
fn round_trip_blocks() {
let _init_guard = zebra_test::init();
// this one has a bad version field, but it is still valid
zebra_test::vectors::BLOCK_MAINNET_434873_BYTES
.zcash_deserialize_into::<Block>()
.expect("bad version block test vector should deserialize");
// now do a round-trip test on all the block test vectors
for block_bytes in zebra_test::vectors::BLOCKS.iter() {
let block = block_bytes
.zcash_deserialize_into::<Block>()
.expect("block is structurally valid");
let round_trip_bytes = block
.zcash_serialize_to_vec()
.expect("vec serialization is infallible");
assert_eq!(&round_trip_bytes[..], *block_bytes);
}
}
#[test]
fn coinbase_parsing_rejects_above_0x80() {
let _init_guard = zebra_test::init();
zebra_test::vectors::BAD_BLOCK_MAINNET_202_BYTES
.zcash_deserialize_into::<Block>()
.expect_err("parsing fails");
}
#[test]
fn block_test_vectors_unique() {
let _init_guard = zebra_test::init();
let block_count = zebra_test::vectors::BLOCKS.len();
let block_hashes: HashSet<_> = zebra_test::vectors::BLOCKS
.iter()
.map(|b| {
b.zcash_deserialize_into::<Block>()
.expect("block is structurally valid")
.hash()
})
.collect();
// putting the same block in two files is an easy mistake to make
assert_eq!(
block_count,
block_hashes.len(),
"block test vectors must be unique"
);
}
#[test]
fn block_test_vectors_height_mainnet() {
let _init_guard = zebra_test::init();
block_test_vectors_height(Mainnet);
}
#[test]
fn block_test_vectors_height_testnet() {
let _init_guard = zebra_test::init();
block_test_vectors_height(Testnet);
}
/// Test that the block test vector indexes match the heights in the block data,
/// and that each post-sapling block has a corresponding final sapling root.
fn block_test_vectors_height(network: Network) {
let (block_iter, sapling_roots) = network.block_sapling_roots_iter();
for (&height, block) in block_iter {
let block = block
.zcash_deserialize_into::<Block>()
.expect("block is structurally valid");
assert_eq!(
block.coinbase_height().expect("block height is valid").0,
height,
"deserialized height must match BTreeMap key height"
);
if height
>= Sapling
.activation_height(network)
.expect("sapling activation height is set")
.0
{
assert!(
sapling_roots.contains_key(&height),
"post-sapling block test vectors must have matching sapling root test vectors: missing {network} {height}"
);
}
}
}
#[test]
fn block_commitment_mainnet() {
let _init_guard = zebra_test::init();
block_commitment(Mainnet);
}
#[test]
fn block_commitment_testnet() {
let _init_guard = zebra_test::init();
block_commitment(Testnet);
}
/// Check that the block commitment field parses without errors.
/// For sapling and blossom blocks, also check the final sapling root value.
///
/// TODO: add chain history test vectors?
fn block_commitment(network: Network) {
let (block_iter, sapling_roots) = network.block_sapling_roots_iter();
for (height, block) in block_iter {
let block = block
.zcash_deserialize_into::<Block>()
.expect("block is structurally valid");
let commitment = block.commitment(network).unwrap_or_else(|_| {
panic!("unexpected structurally invalid block commitment at {network} {height}")
});
if let FinalSaplingRoot(final_sapling_root) = commitment {
let expected_final_sapling_root = *sapling_roots
.get(height)
.expect("unexpected missing final sapling root test vector");
assert_eq!(
final_sapling_root,
crate::sapling::tree::Root::try_from(*expected_final_sapling_root).unwrap(),
"unexpected invalid final sapling root commitment at {network} {height}"
);
}
}
}
#[test]
fn block_limits_multi_tx() {
let _init_guard = zebra_test::init();
// Test multiple small transactions to fill a block max size
// Create a block just below the limit
let mut block = generate::large_multi_transaction_block();
// Serialize the block
let mut data = Vec::new();
block
.zcash_serialize(&mut data)
.expect("block should serialize as we are not limiting generation yet");
assert!(data.len() <= MAX_BLOCK_BYTES as usize);
// Deserialize by now is ok as we are lower than the limit
let block2 = Block::zcash_deserialize(&data[..])
.expect("block should deserialize as we are just below limit");
assert_eq!(block, block2);
// Add 1 more transaction to the block, limit will be reached
block = generate::oversized_multi_transaction_block();
// Serialize will still be fine
let mut data = Vec::new();
block
.zcash_serialize(&mut data)
.expect("block should serialize as we are not limiting generation yet");
assert!(data.len() > MAX_BLOCK_BYTES as usize);
// Deserialize will now fail
Block::zcash_deserialize(&data[..]).expect_err("block should not deserialize");
}
#[test]
fn block_limits_single_tx() {
let _init_guard = zebra_test::init();
// Test block limit with a big single transaction
// Create a block just below the limit
let mut block = generate::large_single_transaction_block_many_inputs();
// Serialize the block
let mut data = Vec::new();
block
.zcash_serialize(&mut data)
.expect("block should serialize as we are not limiting generation yet");
assert!(data.len() <= MAX_BLOCK_BYTES as usize);
// Deserialize by now is ok as we are lower than the limit
Block::zcash_deserialize(&data[..])
.expect("block should deserialize as we are just below limit");
// Add 1 more input to the transaction, limit will be reached
block = generate::oversized_single_transaction_block_many_inputs();
let mut data = Vec::new();
block
.zcash_serialize(&mut data)
.expect("block should serialize as we are not limiting generation yet");
assert!(data.len() > MAX_BLOCK_BYTES as usize);
// Will fail as block overall size is above limit
Block::zcash_deserialize(&data[..]).expect_err("block should not deserialize");
}
/// Test wrapper for `BlockHeader.time_is_valid_at`.
///
/// Generates a block header, sets its `time` to `block_header_time`, then
/// calls `time_is_valid_at`.
fn node_time_check(
block_header_time: DateTime<Utc>,
now: DateTime<Utc>,
) -> Result<(), BlockTimeError> {
let (mut header, _header_bytes) = generate::block_header();
header.time = block_header_time;
// pass a zero height and hash - they are only used in the returned error
header.time_is_valid_at(now, &Height(0), &Hash([0; 32]))
}
#[test]
fn time_check_now() {
let _init_guard = zebra_test::init();
// These checks are deterministic, because all the times are offset
// from the current time.
let now = Utc::now();
let three_hours_in_the_past = now - Duration::hours(3);
let two_hours_in_the_future = now + Duration::hours(2);
let two_hours_and_one_second_in_the_future = now + Duration::hours(2) + Duration::seconds(1);
node_time_check(now, now).expect("the current time should be valid as a block header time");
node_time_check(three_hours_in_the_past, now)
.expect("a past time should be valid as a block header time");
node_time_check(two_hours_in_the_future, now)
.expect("2 hours in the future should be valid as a block header time");
node_time_check(two_hours_and_one_second_in_the_future, now)
.expect_err("2 hours and 1 second in the future should be invalid as a block header time");
// Now invert the tests
// 3 hours in the future should fail
node_time_check(now, three_hours_in_the_past)
.expect_err("3 hours in the future should be invalid as a block header time");
// The past should succeed
node_time_check(now, two_hours_in_the_future)
.expect("2 hours in the past should be valid as a block header time");
node_time_check(now, two_hours_and_one_second_in_the_future)
.expect("2 hours and 1 second in the past should be valid as a block header time");
}
/// Valid unix epoch timestamps for blocks, in seconds
static BLOCK_HEADER_VALID_TIMESTAMPS: &[i64] = &[
// These times are currently invalid DateTimes, but they could
// become valid in future chrono versions
i64::MIN,
i64::MIN + 1,
// These times are valid DateTimes
(i32::MIN as i64) - 1,
(i32::MIN as i64),
(i32::MIN as i64) + 1,
-1,
0,
1,
LockTime::MIN_TIMESTAMP - 1,
LockTime::MIN_TIMESTAMP,
LockTime::MIN_TIMESTAMP + 1,
];
/// Invalid unix epoch timestamps for blocks, in seconds
static BLOCK_HEADER_INVALID_TIMESTAMPS: &[i64] = &[
(i32::MAX as i64) - 1,
(i32::MAX as i64),
(i32::MAX as i64) + 1,
LockTime::MAX_TIMESTAMP - 1,
LockTime::MAX_TIMESTAMP,
LockTime::MAX_TIMESTAMP + 1,
// These times are currently invalid DateTimes, but they could
// become valid in future chrono versions
i64::MAX - 1,
i64::MAX,
];
#[test]
fn time_check_fixed() {
let _init_guard = zebra_test::init();
// These checks are non-deterministic, but the times are all in the
// distant past or far future. So it's unlikely that the test
// machine will have a clock that makes these tests fail.
let now = Utc::now();
for valid_timestamp in BLOCK_HEADER_VALID_TIMESTAMPS {
let block_header_time = match Utc.timestamp_opt(*valid_timestamp, 0) {
LocalResult::Single(time) => time,
LocalResult::None => {
// Skip the test if the timestamp is invalid
continue;
}
LocalResult::Ambiguous(_, _) => {
// Utc doesn't have ambiguous times
unreachable!();
}
};
node_time_check(block_header_time, now)
.expect("the time should be valid as a block header time");
// Invert the check, leading to an invalid time
node_time_check(now, block_header_time)
.expect_err("the inverse comparison should be invalid");
}
for invalid_timestamp in BLOCK_HEADER_INVALID_TIMESTAMPS {
let block_header_time = match Utc.timestamp_opt(*invalid_timestamp, 0) {
LocalResult::Single(time) => time,
LocalResult::None => {
// Skip the test if the timestamp is invalid
continue;
}
LocalResult::Ambiguous(_, _) => {
// Utc doesn't have ambiguous times
unreachable!();
}
};
node_time_check(block_header_time, now)
.expect_err("the time should be invalid as a block header time");
// Invert the check, leading to a valid time
node_time_check(now, block_header_time).expect("the inverse comparison should be valid");
}
}