Merge #8418: Add tests for compact blocks

45c7ddd Add p2p test for BIP 152 (compact blocks) (Suhas Daftuar)
9a22a6c Add support for compactblocks to mininode (Suhas Daftuar)
a8689fd Tests: refactor compact size serialization in mininode (Suhas Daftuar)
9c8593d Implement SipHash in Python (Pieter Wuille)
56c87e9 Allow changing BIP9 parameters on regtest (Suhas Daftuar)
This commit is contained in:
Wladimir J. van der Laan 2016-08-02 08:25:25 +02:00
commit 63c03dd41c
No known key found for this signature in database
GPG Key ID: 74810B012346C9A6
8 changed files with 1026 additions and 76 deletions

View File

@ -142,6 +142,7 @@ testScripts = [
'segwit.py',
'importprunedfunds.py',
'signmessages.py',
'p2p-compactblocks.py',
]
if ENABLE_ZMQ:
testScripts.append('zmq_test.py')

608
qa/rpc-tests/p2p-compactblocks.py Executable file
View File

@ -0,0 +1,608 @@
#!/usr/bin/env python3
# Copyright (c) 2016 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
from test_framework.mininode import *
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import *
from test_framework.blocktools import create_block, create_coinbase
from test_framework.siphash import siphash256
from test_framework.script import CScript, OP_TRUE
'''
CompactBlocksTest -- test compact blocks (BIP 152)
'''
# TestNode: A peer we use to send messages to bitcoind, and store responses.
class TestNode(SingleNodeConnCB):
def __init__(self):
SingleNodeConnCB.__init__(self)
self.last_sendcmpct = None
self.last_headers = None
self.last_inv = None
self.last_cmpctblock = None
self.block_announced = False
self.last_getdata = None
self.last_getblocktxn = None
self.last_block = None
self.last_blocktxn = None
def on_sendcmpct(self, conn, message):
self.last_sendcmpct = message
def on_block(self, conn, message):
self.last_block = message
def on_cmpctblock(self, conn, message):
self.last_cmpctblock = message
self.block_announced = True
def on_headers(self, conn, message):
self.last_headers = message
self.block_announced = True
def on_inv(self, conn, message):
self.last_inv = message
self.block_announced = True
def on_getdata(self, conn, message):
self.last_getdata = message
def on_getblocktxn(self, conn, message):
self.last_getblocktxn = message
def on_blocktxn(self, conn, message):
self.last_blocktxn = message
# Requires caller to hold mininode_lock
def received_block_announcement(self):
return self.block_announced
def clear_block_announcement(self):
with mininode_lock:
self.block_announced = False
self.last_inv = None
self.last_headers = None
self.last_cmpctblock = None
def get_headers(self, locator, hashstop):
msg = msg_getheaders()
msg.locator.vHave = locator
msg.hashstop = hashstop
self.connection.send_message(msg)
def send_header_for_blocks(self, new_blocks):
headers_message = msg_headers()
headers_message.headers = [CBlockHeader(b) for b in new_blocks]
self.send_message(headers_message)
class CompactBlocksTest(BitcoinTestFramework):
def __init__(self):
super().__init__()
self.setup_clean_chain = True
self.num_nodes = 1
self.utxos = []
def setup_network(self):
self.nodes = []
# Turn off segwit in this test, as compact blocks don't currently work
# with segwit. (After BIP 152 is updated to support segwit, we can
# test behavior with and without segwit enabled by adding a second node
# to the test.)
self.nodes = start_nodes(self.num_nodes, self.options.tmpdir, [["-debug", "-logtimemicros=1", "-bip9params=segwit:0:0"]])
def build_block_on_tip(self):
height = self.nodes[0].getblockcount()
tip = self.nodes[0].getbestblockhash()
mtp = self.nodes[0].getblockheader(tip)['mediantime']
block = create_block(int(tip, 16), create_coinbase(height + 1), mtp + 1)
block.solve()
return block
# Create 10 more anyone-can-spend utxo's for testing.
def make_utxos(self):
block = self.build_block_on_tip()
self.test_node.send_and_ping(msg_block(block))
assert(int(self.nodes[0].getbestblockhash(), 16) == block.sha256)
self.nodes[0].generate(100)
total_value = block.vtx[0].vout[0].nValue
out_value = total_value // 10
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(block.vtx[0].sha256, 0), b''))
for i in range(10):
tx.vout.append(CTxOut(out_value, CScript([OP_TRUE])))
tx.rehash()
block2 = self.build_block_on_tip()
block2.vtx.append(tx)
block2.hashMerkleRoot = block2.calc_merkle_root()
block2.solve()
self.test_node.send_and_ping(msg_block(block2))
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block2.sha256)
self.utxos.extend([[tx.sha256, i, out_value] for i in range(10)])
return
# Test "sendcmpct":
# - No compact block announcements or getdata(MSG_CMPCT_BLOCK) unless
# sendcmpct is sent.
# - If sendcmpct is sent with version > 0, the message is ignored.
# - If sendcmpct is sent with boolean 0, then block announcements are not
# made with compact blocks.
# - If sendcmpct is then sent with boolean 1, then new block announcements
# are made with compact blocks.
def test_sendcmpct(self):
print("Testing SENDCMPCT p2p message... ")
# Make sure we get a version 0 SENDCMPCT message from our peer
def received_sendcmpct():
return (self.test_node.last_sendcmpct is not None)
got_message = wait_until(received_sendcmpct, timeout=30)
assert(got_message)
assert_equal(self.test_node.last_sendcmpct.version, 1)
tip = int(self.nodes[0].getbestblockhash(), 16)
def check_announcement_of_new_block(node, peer, predicate):
self.test_node.clear_block_announcement()
node.generate(1)
got_message = wait_until(peer.received_block_announcement, timeout=30)
assert(got_message)
with mininode_lock:
assert(predicate)
# We shouldn't get any block announcements via cmpctblock yet.
check_announcement_of_new_block(self.nodes[0], self.test_node, lambda: self.test_node.last_cmpctblock is None)
# Try one more time, this time after requesting headers.
self.test_node.clear_block_announcement()
self.test_node.get_headers(locator=[tip], hashstop=0)
wait_until(self.test_node.received_block_announcement, timeout=30)
self.test_node.clear_block_announcement()
check_announcement_of_new_block(self.nodes[0], self.test_node, lambda: self.test_node.last_cmpctblock is None and self.test_node.last_inv is not None)
# Now try a SENDCMPCT message with too-high version
sendcmpct = msg_sendcmpct()
sendcmpct.version = 2
self.test_node.send_message(sendcmpct)
check_announcement_of_new_block(self.nodes[0], self.test_node, lambda: self.test_node.last_cmpctblock is None)
# Now try a SENDCMPCT message with valid version, but announce=False
self.test_node.send_message(msg_sendcmpct())
check_announcement_of_new_block(self.nodes[0], self.test_node, lambda: self.test_node.last_cmpctblock is None)
# Finally, try a SENDCMPCT message with announce=True
sendcmpct.version = 1
sendcmpct.announce = True
self.test_node.send_message(sendcmpct)
check_announcement_of_new_block(self.nodes[0], self.test_node, lambda: self.test_node.last_cmpctblock is not None)
# Try one more time
check_announcement_of_new_block(self.nodes[0], self.test_node, lambda: self.test_node.last_cmpctblock is not None)
# Try one more time, after turning on sendheaders
self.test_node.send_message(msg_sendheaders())
check_announcement_of_new_block(self.nodes[0], self.test_node, lambda: self.test_node.last_cmpctblock is not None)
# Now turn off announcements
sendcmpct.announce = False
check_announcement_of_new_block(self.nodes[0], self.test_node, lambda: self.test_node.last_cmpctblock is None and self.test_node.last_headers is not None)
# This test actually causes bitcoind to (reasonably!) disconnect us, so do this last.
def test_invalid_cmpctblock_message(self):
print("Testing invalid index in cmpctblock message...")
self.nodes[0].generate(101)
block = self.build_block_on_tip()
cmpct_block = P2PHeaderAndShortIDs()
cmpct_block.header = CBlockHeader(block)
cmpct_block.prefilled_txn_length = 1
# This index will be too high
prefilled_txn = PrefilledTransaction(1, block.vtx[0])
cmpct_block.prefilled_txn = [prefilled_txn]
self.test_node.send_and_ping(msg_cmpctblock(cmpct_block))
assert(int(self.nodes[0].getbestblockhash(), 16) == block.hashPrevBlock)
# Compare the generated shortids to what we expect based on BIP 152, given
# bitcoind's choice of nonce.
def test_compactblock_construction(self):
print("Testing compactblock headers and shortIDs are correct...")
# Generate a bunch of transactions.
self.nodes[0].generate(101)
num_transactions = 25
address = self.nodes[0].getnewaddress()
for i in range(num_transactions):
self.nodes[0].sendtoaddress(address, 0.1)
# Now mine a block, and look at the resulting compact block.
self.test_node.clear_block_announcement()
block_hash = int(self.nodes[0].generate(1)[0], 16)
# Store the raw block in our internal format.
block = FromHex(CBlock(), self.nodes[0].getblock("%02x" % block_hash, False))
[tx.calc_sha256() for tx in block.vtx]
block.rehash()
# Don't care which type of announcement came back for this test; just
# request the compact block if we didn't get one yet.
wait_until(self.test_node.received_block_announcement, timeout=30)
with mininode_lock:
if self.test_node.last_cmpctblock is None:
self.test_node.clear_block_announcement()
inv = CInv(4, block_hash) # 4 == "CompactBlock"
self.test_node.send_message(msg_getdata([inv]))
wait_until(self.test_node.received_block_announcement, timeout=30)
# Now we should have the compactblock
header_and_shortids = None
with mininode_lock:
assert(self.test_node.last_cmpctblock is not None)
# Convert the on-the-wire representation to absolute indexes
header_and_shortids = HeaderAndShortIDs(self.test_node.last_cmpctblock.header_and_shortids)
# Check that we got the right block!
header_and_shortids.header.calc_sha256()
assert_equal(header_and_shortids.header.sha256, block_hash)
# Make sure the prefilled_txn appears to have included the coinbase
assert(len(header_and_shortids.prefilled_txn) >= 1)
assert_equal(header_and_shortids.prefilled_txn[0].index, 0)
# Check that all prefilled_txn entries match what's in the block.
for entry in header_and_shortids.prefilled_txn:
entry.tx.calc_sha256()
assert_equal(entry.tx.sha256, block.vtx[entry.index].sha256)
# Check that the cmpctblock message announced all the transactions.
assert_equal(len(header_and_shortids.prefilled_txn) + len(header_and_shortids.shortids), len(block.vtx))
# And now check that all the shortids are as expected as well.
# Determine the siphash keys to use.
[k0, k1] = header_and_shortids.get_siphash_keys()
index = 0
while index < len(block.vtx):
if (len(header_and_shortids.prefilled_txn) > 0 and
header_and_shortids.prefilled_txn[0].index == index):
# Already checked prefilled transactions above
header_and_shortids.prefilled_txn.pop(0)
else:
shortid = calculate_shortid(k0, k1, block.vtx[index].sha256)
assert_equal(shortid, header_and_shortids.shortids[0])
header_and_shortids.shortids.pop(0)
index += 1
# Test that bitcoind requests compact blocks when we announce new blocks
# via header or inv, and that responding to getblocktxn causes the block
# to be successfully reconstructed.
def test_compactblock_requests(self):
print("Testing compactblock requests... ")
# Try announcing a block with an inv or header, expect a compactblock
# request
for announce in ["inv", "header"]:
block = self.build_block_on_tip()
with mininode_lock:
self.test_node.last_getdata = None
if announce == "inv":
self.test_node.send_message(msg_inv([CInv(2, block.sha256)]))
else:
self.test_node.send_header_for_blocks([block])
success = wait_until(lambda: self.test_node.last_getdata is not None, timeout=30)
assert(success)
assert_equal(len(self.test_node.last_getdata.inv), 1)
assert_equal(self.test_node.last_getdata.inv[0].type, 4)
assert_equal(self.test_node.last_getdata.inv[0].hash, block.sha256)
# Send back a compactblock message that omits the coinbase
comp_block = HeaderAndShortIDs()
comp_block.header = CBlockHeader(block)
comp_block.nonce = 0
comp_block.shortids = [1] # this is useless, and wrong
self.test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.hashPrevBlock)
# Expect a getblocktxn message.
with mininode_lock:
assert(self.test_node.last_getblocktxn is not None)
absolute_indexes = self.test_node.last_getblocktxn.block_txn_request.to_absolute()
assert_equal(absolute_indexes, [0]) # should be a coinbase request
# Send the coinbase, and verify that the tip advances.
msg = msg_blocktxn()
msg.block_transactions.blockhash = block.sha256
msg.block_transactions.transactions = [block.vtx[0]]
self.test_node.send_and_ping(msg)
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.sha256)
# Create a chain of transactions from given utxo, and add to a new block.
def build_block_with_transactions(self, utxo, num_transactions):
block = self.build_block_on_tip()
for i in range(num_transactions):
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(utxo[0], utxo[1]), b''))
tx.vout.append(CTxOut(utxo[2] - 1000, CScript([OP_TRUE])))
tx.rehash()
utxo = [tx.sha256, 0, tx.vout[0].nValue]
block.vtx.append(tx)
block.hashMerkleRoot = block.calc_merkle_root()
block.solve()
return block
# Test that we only receive getblocktxn requests for transactions that the
# node needs, and that responding to them causes the block to be
# reconstructed.
def test_getblocktxn_requests(self):
print("Testing getblocktxn requests...")
# First try announcing compactblocks that won't reconstruct, and verify
# that we receive getblocktxn messages back.
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(utxo, 5)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
comp_block = HeaderAndShortIDs()
comp_block.initialize_from_block(block)
self.test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
with mininode_lock:
assert(self.test_node.last_getblocktxn is not None)
absolute_indexes = self.test_node.last_getblocktxn.block_txn_request.to_absolute()
assert_equal(absolute_indexes, [1, 2, 3, 4, 5])
msg = msg_blocktxn()
msg.block_transactions = BlockTransactions(block.sha256, block.vtx[1:])
self.test_node.send_and_ping(msg)
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.sha256)
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(utxo, 5)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
# Now try interspersing the prefilled transactions
comp_block.initialize_from_block(block, prefill_list=[0, 1, 5])
self.test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
with mininode_lock:
assert(self.test_node.last_getblocktxn is not None)
absolute_indexes = self.test_node.last_getblocktxn.block_txn_request.to_absolute()
assert_equal(absolute_indexes, [2, 3, 4])
msg.block_transactions = BlockTransactions(block.sha256, block.vtx[2:5])
self.test_node.send_and_ping(msg)
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.sha256)
# Now try giving one transaction ahead of time.
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(utxo, 5)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
self.test_node.send_and_ping(msg_tx(block.vtx[1]))
assert(block.vtx[1].hash in self.nodes[0].getrawmempool())
# Prefill 4 out of the 6 transactions, and verify that only the one
# that was not in the mempool is requested.
comp_block.initialize_from_block(block, prefill_list=[0, 2, 3, 4])
self.test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
with mininode_lock:
assert(self.test_node.last_getblocktxn is not None)
absolute_indexes = self.test_node.last_getblocktxn.block_txn_request.to_absolute()
assert_equal(absolute_indexes, [5])
msg.block_transactions = BlockTransactions(block.sha256, [block.vtx[5]])
self.test_node.send_and_ping(msg)
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.sha256)
# Now provide all transactions to the node before the block is
# announced and verify reconstruction happens immediately.
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(utxo, 10)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
for tx in block.vtx[1:]:
self.test_node.send_message(msg_tx(tx))
self.test_node.sync_with_ping()
# Make sure all transactions were accepted.
mempool = self.nodes[0].getrawmempool()
for tx in block.vtx[1:]:
assert(tx.hash in mempool)
# Clear out last request.
with mininode_lock:
self.test_node.last_getblocktxn = None
# Send compact block
comp_block.initialize_from_block(block, prefill_list=[0])
self.test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
with mininode_lock:
# Shouldn't have gotten a request for any transaction
assert(self.test_node.last_getblocktxn is None)
# Tip should have updated
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.sha256)
# Incorrectly responding to a getblocktxn shouldn't cause the block to be
# permanently failed.
def test_incorrect_blocktxn_response(self):
print("Testing handling of incorrect blocktxn responses...")
if (len(self.utxos) == 0):
self.make_utxos()
utxo = self.utxos.pop(0)
block = self.build_block_with_transactions(utxo, 10)
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue])
# Relay the first 5 transactions from the block in advance
for tx in block.vtx[1:6]:
self.test_node.send_message(msg_tx(tx))
self.test_node.sync_with_ping()
# Make sure all transactions were accepted.
mempool = self.nodes[0].getrawmempool()
for tx in block.vtx[1:6]:
assert(tx.hash in mempool)
# Send compact block
comp_block = HeaderAndShortIDs()
comp_block.initialize_from_block(block, prefill_list=[0])
self.test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
absolute_indexes = []
with mininode_lock:
assert(self.test_node.last_getblocktxn is not None)
absolute_indexes = self.test_node.last_getblocktxn.block_txn_request.to_absolute()
assert_equal(absolute_indexes, [6, 7, 8, 9, 10])
# Now give an incorrect response.
# Note that it's possible for bitcoind to be smart enough to know we're
# lying, since it could check to see if the shortid matches what we're
# sending, and eg disconnect us for misbehavior. If that behavior
# change were made, we could just modify this test by having a
# different peer provide the block further down, so that we're still
# verifying that the block isn't marked bad permanently. This is good
# enough for now.
msg = msg_blocktxn()
msg.block_transactions = BlockTransactions(block.sha256, [block.vtx[5]] + block.vtx[7:])
self.test_node.send_and_ping(msg)
# Tip should not have updated
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.hashPrevBlock)
# We should receive a getdata request
success = wait_until(lambda: self.test_node.last_getdata is not None, timeout=10)
assert(success)
assert_equal(len(self.test_node.last_getdata.inv), 1)
assert_equal(self.test_node.last_getdata.inv[0].type, 2)
assert_equal(self.test_node.last_getdata.inv[0].hash, block.sha256)
# Deliver the block
self.test_node.send_and_ping(msg_block(block))
assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.sha256)
def test_getblocktxn_handler(self):
print("Testing getblocktxn handler...")
# bitcoind won't respond for blocks whose height is more than 15 blocks
# deep.
MAX_GETBLOCKTXN_DEPTH = 15
chain_height = self.nodes[0].getblockcount()
current_height = chain_height
while (current_height >= chain_height - MAX_GETBLOCKTXN_DEPTH):
block_hash = self.nodes[0].getblockhash(current_height)
block = FromHex(CBlock(), self.nodes[0].getblock(block_hash, False))
msg = msg_getblocktxn()
msg.block_txn_request = BlockTransactionsRequest(int(block_hash, 16), [])
num_to_request = random.randint(1, len(block.vtx))
msg.block_txn_request.from_absolute(sorted(random.sample(range(len(block.vtx)), num_to_request)))
self.test_node.send_message(msg)
success = wait_until(lambda: self.test_node.last_blocktxn is not None, timeout=10)
assert(success)
[tx.calc_sha256() for tx in block.vtx]
with mininode_lock:
assert_equal(self.test_node.last_blocktxn.block_transactions.blockhash, int(block_hash, 16))
all_indices = msg.block_txn_request.to_absolute()
for index in all_indices:
tx = self.test_node.last_blocktxn.block_transactions.transactions.pop(0)
tx.calc_sha256()
assert_equal(tx.sha256, block.vtx[index].sha256)
self.test_node.last_blocktxn = None
current_height -= 1
# Next request should be ignored, as we're past the allowed depth.
block_hash = self.nodes[0].getblockhash(current_height)
msg.block_txn_request = BlockTransactionsRequest(int(block_hash, 16), [0])
self.test_node.send_and_ping(msg)
with mininode_lock:
assert_equal(self.test_node.last_blocktxn, None)
def test_compactblocks_not_at_tip(self):
print("Testing compactblock requests/announcements not at chain tip...")
# Test that requesting old compactblocks doesn't work.
MAX_CMPCTBLOCK_DEPTH = 11
new_blocks = []
for i in range(MAX_CMPCTBLOCK_DEPTH):
self.test_node.clear_block_announcement()
new_blocks.append(self.nodes[0].generate(1)[0])
wait_until(self.test_node.received_block_announcement, timeout=30)
self.test_node.clear_block_announcement()
self.test_node.send_message(msg_getdata([CInv(4, int(new_blocks[0], 16))]))
success = wait_until(lambda: self.test_node.last_cmpctblock is not None, timeout=30)
assert(success)
self.test_node.clear_block_announcement()
self.nodes[0].generate(1)
wait_until(self.test_node.received_block_announcement, timeout=30)
self.test_node.clear_block_announcement()
self.test_node.send_message(msg_getdata([CInv(4, int(new_blocks[0], 16))]))
success = wait_until(lambda: self.test_node.last_block is not None, timeout=30)
assert(success)
with mininode_lock:
self.test_node.last_block.block.calc_sha256()
assert_equal(self.test_node.last_block.block.sha256, int(new_blocks[0], 16))
# Generate an old compactblock, and verify that it's not accepted.
cur_height = self.nodes[0].getblockcount()
hashPrevBlock = int(self.nodes[0].getblockhash(cur_height-5), 16)
block = self.build_block_on_tip()
block.hashPrevBlock = hashPrevBlock
block.solve()
comp_block = HeaderAndShortIDs()
comp_block.initialize_from_block(block)
self.test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p()))
tips = self.nodes[0].getchaintips()
found = False
for x in tips:
if x["hash"] == block.hash:
assert_equal(x["status"], "headers-only")
found = True
break
assert(found)
# Requesting this block via getblocktxn should silently fail
# (to avoid fingerprinting attacks).
msg = msg_getblocktxn()
msg.block_txn_request = BlockTransactionsRequest(block.sha256, [0])
with mininode_lock:
self.test_node.last_blocktxn = None
self.test_node.send_and_ping(msg)
with mininode_lock:
assert(self.test_node.last_blocktxn is None)
def run_test(self):
# Setup the p2p connections and start up the network thread.
self.test_node = TestNode()
connections = []
connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], self.test_node))
self.test_node.add_connection(connections[0])
NetworkThread().start() # Start up network handling in another thread
# Test logic begins here
self.test_node.wait_for_verack()
# We will need UTXOs to construct transactions in later tests.
self.make_utxos()
self.test_sendcmpct()
self.test_compactblock_construction()
self.test_compactblock_requests()
self.test_getblocktxn_requests()
self.test_getblocktxn_handler()
self.test_compactblocks_not_at_tip()
self.test_incorrect_blocktxn_response()
self.test_invalid_cmpctblock_message()
if __name__ == '__main__':
CompactBlocksTest().main()

View File

@ -36,9 +36,10 @@ from threading import RLock
from threading import Thread
import logging
import copy
from test_framework.siphash import siphash256
BIP0031_VERSION = 60000
MY_VERSION = 60001 # past bip-31 for ping/pong
MY_VERSION = 70014 # past bip-31 for ping/pong
MY_SUBVERSION = b"/python-mininode-tester:0.0.3/"
MAX_INV_SZ = 50000
@ -52,7 +53,7 @@ NODE_BLOOM = (1 << 2)
NODE_WITNESS = (1 << 3)
# Keep our own socket map for asyncore, so that we can track disconnects
# ourselves (to workaround an issue with closing an asyncore socket when
# ourselves (to workaround an issue with closing an asyncore socket when
# using select)
mininode_socket_map = dict()
@ -74,8 +75,19 @@ def ripemd160(s):
def hash256(s):
return sha256(sha256(s))
def ser_compact_size(l):
r = b""
if l < 253:
r = struct.pack("B", l)
elif l < 0x10000:
r = struct.pack("<BH", 253, l)
elif l < 0x100000000:
r = struct.pack("<BI", 254, l)
else:
r = struct.pack("<BQ", 255, l)
return r
def deser_string(f):
def deser_compact_size(f):
nit = struct.unpack("<B", f.read(1))[0]
if nit == 253:
nit = struct.unpack("<H", f.read(2))[0]
@ -83,16 +95,14 @@ def deser_string(f):
nit = struct.unpack("<I", f.read(4))[0]
elif nit == 255:
nit = struct.unpack("<Q", f.read(8))[0]
return nit
def deser_string(f):
nit = deser_compact_size(f)
return f.read(nit)
def ser_string(s):
if len(s) < 253:
return struct.pack("B", len(s)) + s
elif len(s) < 0x10000:
return struct.pack("<BH", 253, len(s)) + s
elif len(s) < 0x100000000:
return struct.pack("<BI", 254, len(s)) + s
return struct.pack("<BQ", 255, len(s)) + s
return ser_compact_size(len(s)) + s
def deser_uint256(f):
r = 0
@ -125,13 +135,7 @@ def uint256_from_compact(c):
def deser_vector(f, c):
nit = struct.unpack("<B", f.read(1))[0]
if nit == 253:
nit = struct.unpack("<H", f.read(2))[0]
elif nit == 254:
nit = struct.unpack("<I", f.read(4))[0]
elif nit == 255:
nit = struct.unpack("<Q", f.read(8))[0]
nit = deser_compact_size(f)
r = []
for i in range(nit):
t = c()
@ -144,15 +148,7 @@ def deser_vector(f, c):
# entries in the vector (we use this for serializing the vector of transactions
# for a witness block).
def ser_vector(l, ser_function_name=None):
r = b""
if len(l) < 253:
r = struct.pack("B", len(l))
elif len(l) < 0x10000:
r = struct.pack("<BH", 253, len(l))
elif len(l) < 0x100000000:
r = struct.pack("<BI", 254, len(l))
else:
r = struct.pack("<BQ", 255, len(l))
r = ser_compact_size(len(l))
for i in l:
if ser_function_name:
r += getattr(i, ser_function_name)()
@ -162,13 +158,7 @@ def ser_vector(l, ser_function_name=None):
def deser_uint256_vector(f):
nit = struct.unpack("<B", f.read(1))[0]
if nit == 253:
nit = struct.unpack("<H", f.read(2))[0]
elif nit == 254:
nit = struct.unpack("<I", f.read(4))[0]
elif nit == 255:
nit = struct.unpack("<Q", f.read(8))[0]
nit = deser_compact_size(f)
r = []
for i in range(nit):
t = deser_uint256(f)
@ -177,28 +167,14 @@ def deser_uint256_vector(f):
def ser_uint256_vector(l):
r = b""
if len(l) < 253:
r = struct.pack("B", len(l))
elif len(l) < 0x10000:
r = struct.pack("<BH", 253, len(l))
elif len(l) < 0x100000000:
r = struct.pack("<BI", 254, len(l))
else:
r = struct.pack("<BQ", 255, len(l))
r = ser_compact_size(len(l))
for i in l:
r += ser_uint256(i)
return r
def deser_string_vector(f):
nit = struct.unpack("<B", f.read(1))[0]
if nit == 253:
nit = struct.unpack("<H", f.read(2))[0]
elif nit == 254:
nit = struct.unpack("<I", f.read(4))[0]
elif nit == 255:
nit = struct.unpack("<Q", f.read(8))[0]
nit = deser_compact_size(f)
r = []
for i in range(nit):
t = deser_string(f)
@ -207,28 +183,14 @@ def deser_string_vector(f):
def ser_string_vector(l):
r = b""
if len(l) < 253:
r = struct.pack("B", len(l))
elif len(l) < 0x10000:
r = struct.pack("<BH", 253, len(l))
elif len(l) < 0x100000000:
r = struct.pack("<BI", 254, len(l))
else:
r = struct.pack("<BQ", 255, len(l))
r = ser_compact_size(len(l))
for sv in l:
r += ser_string(sv)
return r
def deser_int_vector(f):
nit = struct.unpack("<B", f.read(1))[0]
if nit == 253:
nit = struct.unpack("<H", f.read(2))[0]
elif nit == 254:
nit = struct.unpack("<I", f.read(4))[0]
elif nit == 255:
nit = struct.unpack("<Q", f.read(8))[0]
nit = deser_compact_size(f)
r = []
for i in range(nit):
t = struct.unpack("<i", f.read(4))[0]
@ -237,15 +199,7 @@ def deser_int_vector(f):
def ser_int_vector(l):
r = b""
if len(l) < 253:
r = struct.pack("B", len(l))
elif len(l) < 0x10000:
r = struct.pack("<BH", 253, len(l))
elif len(l) < 0x100000000:
r = struct.pack("<BI", 254, len(l))
else:
r = struct.pack("<BQ", 255, len(l))
r = ser_compact_size(len(l))
for i in l:
r += struct.pack("<i", i)
return r
@ -294,7 +248,8 @@ class CInv(object):
1: "TX",
2: "Block",
1|MSG_WITNESS_FLAG: "WitnessTx",
2|MSG_WITNESS_FLAG : "WitnessBlock"
2|MSG_WITNESS_FLAG : "WitnessBlock",
4: "CompactBlock"
}
def __init__(self, t=0, h=0):
@ -781,6 +736,187 @@ class CAlert(object):
% (len(self.vchMsg), len(self.vchSig))
class PrefilledTransaction(object):
def __init__(self, index=0, tx = None):
self.index = index
self.tx = tx
def deserialize(self, f):
self.index = deser_compact_size(f)
self.tx = CTransaction()
self.tx.deserialize(f)
def serialize(self, with_witness=False):
r = b""
r += ser_compact_size(self.index)
if with_witness:
r += self.tx.serialize_with_witness()
else:
r += self.tx.serialize_without_witness()
return r
def __repr__(self):
return "PrefilledTransaction(index=%d, tx=%s)" % (self.index, repr(self.tx))
# This is what we send on the wire, in a cmpctblock message.
class P2PHeaderAndShortIDs(object):
def __init__(self):
self.header = CBlockHeader()
self.nonce = 0
self.shortids_length = 0
self.shortids = []
self.prefilled_txn_length = 0
self.prefilled_txn = []
def deserialize(self, f):
self.header.deserialize(f)
self.nonce = struct.unpack("<Q", f.read(8))[0]
self.shortids_length = deser_compact_size(f)
for i in range(self.shortids_length):
# shortids are defined to be 6 bytes in the spec, so append
# two zero bytes and read it in as an 8-byte number
self.shortids.append(struct.unpack("<Q", f.read(6) + b'\x00\x00')[0])
self.prefilled_txn = deser_vector(f, PrefilledTransaction)
self.prefilled_txn_length = len(self.prefilled_txn)
def serialize(self, with_witness=False):
r = b""
r += self.header.serialize()
r += struct.pack("<Q", self.nonce)
r += ser_compact_size(self.shortids_length)
for x in self.shortids:
# We only want the first 6 bytes
r += struct.pack("<Q", x)[0:6]
r += ser_vector(self.prefilled_txn)
return r
def __repr__(self):
return "P2PHeaderAndShortIDs(header=%s, nonce=%d, shortids_length=%d, shortids=%s, prefilled_txn_length=%d, prefilledtxn=%s" % (repr(self.header), self.nonce, self.shortids_length, repr(self.shortids), self.prefilled_txn_length, repr(self.prefilled_txn))
# Calculate the BIP 152-compact blocks shortid for a given transaction hash
def calculate_shortid(k0, k1, tx_hash):
expected_shortid = siphash256(k0, k1, tx_hash)
expected_shortid &= 0x0000ffffffffffff
return expected_shortid
# This version gets rid of the array lengths, and reinterprets the differential
# encoding into indices that can be used for lookup.
class HeaderAndShortIDs(object):
def __init__(self, p2pheaders_and_shortids = None):
self.header = CBlockHeader()
self.nonce = 0
self.shortids = []
self.prefilled_txn = []
if p2pheaders_and_shortids != None:
self.header = p2pheaders_and_shortids.header
self.nonce = p2pheaders_and_shortids.nonce
self.shortids = p2pheaders_and_shortids.shortids
last_index = -1
for x in p2pheaders_and_shortids.prefilled_txn:
self.prefilled_txn.append(PrefilledTransaction(x.index + last_index + 1, x.tx))
last_index = self.prefilled_txn[-1].index
def to_p2p(self):
ret = P2PHeaderAndShortIDs()
ret.header = self.header
ret.nonce = self.nonce
ret.shortids_length = len(self.shortids)
ret.shortids = self.shortids
ret.prefilled_txn_length = len(self.prefilled_txn)
ret.prefilled_txn = []
last_index = -1
for x in self.prefilled_txn:
ret.prefilled_txn.append(PrefilledTransaction(x.index - last_index - 1, x.tx))
last_index = x.index
return ret
def get_siphash_keys(self):
header_nonce = self.header.serialize()
header_nonce += struct.pack("<Q", self.nonce)
hash_header_nonce_as_str = sha256(header_nonce)
key0 = struct.unpack("<Q", hash_header_nonce_as_str[0:8])[0]
key1 = struct.unpack("<Q", hash_header_nonce_as_str[8:16])[0]
return [ key0, key1 ]
def initialize_from_block(self, block, nonce=0, prefill_list = [0]):
self.header = CBlockHeader(block)
self.nonce = nonce
self.prefilled_txn = [ PrefilledTransaction(i, block.vtx[i]) for i in prefill_list ]
self.shortids = []
[k0, k1] = self.get_siphash_keys()
for i in range(len(block.vtx)):
if i not in prefill_list:
self.shortids.append(calculate_shortid(k0, k1, block.vtx[i].sha256))
def __repr__(self):
return "HeaderAndShortIDs(header=%s, nonce=%d, shortids=%s, prefilledtxn=%s" % (repr(self.header), self.nonce, repr(self.shortids), repr(self.prefilled_txn))
class BlockTransactionsRequest(object):
def __init__(self, blockhash=0, indexes = None):
self.blockhash = blockhash
self.indexes = indexes if indexes != None else []
def deserialize(self, f):
self.blockhash = deser_uint256(f)
indexes_length = deser_compact_size(f)
for i in range(indexes_length):
self.indexes.append(deser_compact_size(f))
def serialize(self):
r = b""
r += ser_uint256(self.blockhash)
r += ser_compact_size(len(self.indexes))
for x in self.indexes:
r += ser_compact_size(x)
return r
# helper to set the differentially encoded indexes from absolute ones
def from_absolute(self, absolute_indexes):
self.indexes = []
last_index = -1
for x in absolute_indexes:
self.indexes.append(x-last_index-1)
last_index = x
def to_absolute(self):
absolute_indexes = []
last_index = -1
for x in self.indexes:
absolute_indexes.append(x+last_index+1)
last_index = absolute_indexes[-1]
return absolute_indexes
def __repr__(self):
return "BlockTransactionsRequest(hash=%064x indexes=%s)" % (self.blockhash, repr(self.indexes))
class BlockTransactions(object):
def __init__(self, blockhash=0, transactions = None):
self.blockhash = blockhash
self.transactions = transactions if transactions != None else []
def deserialize(self, f):
self.blockhash = deser_uint256(f)
self.transactions = deser_vector(f, CTransaction)
def serialize(self, with_witness=False):
r = b""
r += ser_uint256(self.blockhash)
if with_witness:
r += ser_vector(self.transactions, "serialize_with_witness")
else:
r += ser_vector(self.transactions)
return r
def __repr__(self):
return "BlockTransactions(hash=%064x transactions=%s)" % (self.blockhash, repr(self.transactions))
# Objects that correspond to messages on the wire
class msg_version(object):
command = b"version"
@ -1215,6 +1351,79 @@ class msg_feefilter(object):
def __repr__(self):
return "msg_feefilter(feerate=%08x)" % self.feerate
class msg_sendcmpct(object):
command = b"sendcmpct"
def __init__(self):
self.announce = False
self.version = 1
def deserialize(self, f):
self.announce = struct.unpack("<?", f.read(1))[0]
self.version = struct.unpack("<Q", f.read(8))[0]
def serialize(self):
r = b""
r += struct.pack("<?", self.announce)
r += struct.pack("<Q", self.version)
return r
def __repr__(self):
return "msg_sendcmpct(announce=%s, version=%lu)" % (self.announce, self.version)
class msg_cmpctblock(object):
command = b"cmpctblock"
def __init__(self, header_and_shortids = None):
self.header_and_shortids = header_and_shortids
def deserialize(self, f):
self.header_and_shortids = P2PHeaderAndShortIDs()
self.header_and_shortids.deserialize(f)
def serialize(self):
r = b""
r += self.header_and_shortids.serialize()
return r
def __repr__(self):
return "msg_cmpctblock(HeaderAndShortIDs=%s)" % repr(self.header_and_shortids)
class msg_getblocktxn(object):
command = b"getblocktxn"
def __init__(self):
self.block_txn_request = None
def deserialize(self, f):
self.block_txn_request = BlockTransactionsRequest()
self.block_txn_request.deserialize(f)
def serialize(self):
r = b""
r += self.block_txn_request.serialize()
return r
def __repr__(self):
return "msg_getblocktxn(block_txn_request=%s)" % (repr(self.block_txn_request))
class msg_blocktxn(object):
command = b"blocktxn"
def __init__(self):
self.block_transactions = BlockTransactions()
def deserialize(self, f):
self.block_transactions.deserialize(f)
def serialize(self):
r = b""
r += self.block_transactions.serialize()
return r
def __repr__(self):
return "msg_blocktxn(block_transactions=%s)" % (repr(self.block_transactions))
# This is what a callback should look like for NodeConn
# Reimplement the on_* functions to provide handling for events
class NodeConnCB(object):
@ -1295,6 +1504,10 @@ class NodeConnCB(object):
def on_pong(self, conn, message): pass
def on_feefilter(self, conn, message): pass
def on_sendheaders(self, conn, message): pass
def on_sendcmpct(self, conn, message): pass
def on_cmpctblock(self, conn, message): pass
def on_getblocktxn(self, conn, message): pass
def on_blocktxn(self, conn, message): pass
# More useful callbacks and functions for NodeConnCB's which have a single NodeConn
class SingleNodeConnCB(NodeConnCB):
@ -1311,6 +1524,10 @@ class SingleNodeConnCB(NodeConnCB):
def send_message(self, message):
self.connection.send_message(message)
def send_and_ping(self, message):
self.send_message(message)
self.sync_with_ping()
def on_pong(self, conn, message):
self.last_pong = message
@ -1344,7 +1561,11 @@ class NodeConn(asyncore.dispatcher):
b"reject": msg_reject,
b"mempool": msg_mempool,
b"feefilter": msg_feefilter,
b"sendheaders": msg_sendheaders
b"sendheaders": msg_sendheaders,
b"sendcmpct": msg_sendcmpct,
b"cmpctblock": msg_cmpctblock,
b"getblocktxn": msg_getblocktxn,
b"blocktxn": msg_blocktxn
}
MAGIC_BYTES = {
"mainnet": b"\xf9\xbe\xb4\xd9", # mainnet

View File

@ -0,0 +1,64 @@
#!/usr/bin/env python3
# Copyright (c) 2016 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
#
# siphash.py - Specialized SipHash-2-4 implementations
#
# This implements SipHash-2-4 for 256-bit integers.
def rotl64(n, b):
return n >> (64 - b) | (n & ((1 << (64 - b)) - 1)) << b
def siphash_round(v0, v1, v2, v3):
v0 = (v0 + v1) & ((1 << 64) - 1)
v1 = rotl64(v1, 13)
v1 ^= v0
v0 = rotl64(v0, 32)
v2 = (v2 + v3) & ((1 << 64) - 1)
v3 = rotl64(v3, 16)
v3 ^= v2
v0 = (v0 + v3) & ((1 << 64) - 1)
v3 = rotl64(v3, 21)
v3 ^= v0
v2 = (v2 + v1) & ((1 << 64) - 1)
v1 = rotl64(v1, 17)
v1 ^= v2
v2 = rotl64(v2, 32)
return (v0, v1, v2, v3)
def siphash256(k0, k1, h):
n0 = h & ((1 << 64) - 1)
n1 = (h >> 64) & ((1 << 64) - 1)
n2 = (h >> 128) & ((1 << 64) - 1)
n3 = (h >> 192) & ((1 << 64) - 1)
v0 = 0x736f6d6570736575 ^ k0
v1 = 0x646f72616e646f6d ^ k1
v2 = 0x6c7967656e657261 ^ k0
v3 = 0x7465646279746573 ^ k1 ^ n0
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
v0 ^= n0
v3 ^= n1
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
v0 ^= n1
v3 ^= n2
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
v0 ^= n2
v3 ^= n3
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
v0 ^= n3
v3 ^= 0x2000000000000000
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
v0 ^= 0x2000000000000000
v2 ^= 0xFF
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
v0, v1, v2, v3 = siphash_round(v0, v1, v2, v3)
return v0 ^ v1 ^ v2 ^ v3

View File

@ -303,6 +303,12 @@ public:
base58Prefixes[EXT_PUBLIC_KEY] = boost::assign::list_of(0x04)(0x35)(0x87)(0xCF).convert_to_container<std::vector<unsigned char> >();
base58Prefixes[EXT_SECRET_KEY] = boost::assign::list_of(0x04)(0x35)(0x83)(0x94).convert_to_container<std::vector<unsigned char> >();
}
void UpdateBIP9Parameters(Consensus::DeploymentPos d, int64_t nStartTime, int64_t nTimeout)
{
consensus.vDeployments[d].nStartTime = nStartTime;
consensus.vDeployments[d].nTimeout = nTimeout;
}
};
static CRegTestParams regTestParams;
@ -330,4 +336,9 @@ void SelectParams(const std::string& network)
SelectBaseParams(network);
pCurrentParams = &Params(network);
}
void UpdateRegtestBIP9Parameters(Consensus::DeploymentPos d, int64_t nStartTime, int64_t nTimeout)
{
regTestParams.UpdateBIP9Parameters(d, nStartTime, nTimeout);
}

View File

@ -112,4 +112,9 @@ CChainParams& Params(const std::string& chain);
*/
void SelectParams(const std::string& chain);
/**
* Allows modifying the BIP9 regtest parameters.
*/
void UpdateRegtestBIP9Parameters(Consensus::DeploymentPos d, int64_t nStartTime, int64_t nTimeout);
#endif // BITCOIN_CHAINPARAMS_H

View File

@ -410,6 +410,7 @@ std::string HelpMessage(HelpMessageMode mode)
strUsage += HelpMessageOpt("-limitancestorsize=<n>", strprintf("Do not accept transactions whose size with all in-mempool ancestors exceeds <n> kilobytes (default: %u)", DEFAULT_ANCESTOR_SIZE_LIMIT));
strUsage += HelpMessageOpt("-limitdescendantcount=<n>", strprintf("Do not accept transactions if any ancestor would have <n> or more in-mempool descendants (default: %u)", DEFAULT_DESCENDANT_LIMIT));
strUsage += HelpMessageOpt("-limitdescendantsize=<n>", strprintf("Do not accept transactions if any ancestor would have more than <n> kilobytes of in-mempool descendants (default: %u).", DEFAULT_DESCENDANT_SIZE_LIMIT));
strUsage += HelpMessageOpt("-bip9params=deployment:start:end", "Use given start/end times for specified bip9 deployment (regtest-only)");
}
string debugCategories = "addrman, alert, bench, coindb, db, http, libevent, lock, mempool, mempoolrej, net, proxy, prune, rand, reindex, rpc, selectcoins, tor, zmq"; // Don't translate these and qt below
if (mode == HMM_BITCOIN_QT)
@ -975,6 +976,41 @@ bool AppInit2(boost::thread_group& threadGroup, CScheduler& scheduler)
fEnableReplacement = (std::find(vstrReplacementModes.begin(), vstrReplacementModes.end(), "fee") != vstrReplacementModes.end());
}
if (!mapMultiArgs["-bip9params"].empty()) {
// Allow overriding bip9 parameters for testing
if (!Params().MineBlocksOnDemand()) {
return InitError("BIP9 parameters may only be overridden on regtest.");
}
const vector<string>& deployments = mapMultiArgs["-bip9params"];
for (auto i : deployments) {
std::vector<std::string> vDeploymentParams;
boost::split(vDeploymentParams, i, boost::is_any_of(":"));
if (vDeploymentParams.size() != 3) {
return InitError("BIP9 parameters malformed, expecting deployment:start:end");
}
int64_t nStartTime, nTimeout;
if (!ParseInt64(vDeploymentParams[1], &nStartTime)) {
return InitError(strprintf("Invalid nStartTime (%s)", vDeploymentParams[1]));
}
if (!ParseInt64(vDeploymentParams[2], &nTimeout)) {
return InitError(strprintf("Invalid nTimeout (%s)", vDeploymentParams[2]));
}
bool found = false;
for (int i=0; i<(int)Consensus::MAX_VERSION_BITS_DEPLOYMENTS; ++i)
{
if (vDeploymentParams[0].compare(VersionBitsDeploymentInfo[i].name) == 0) {
UpdateRegtestBIP9Parameters(Consensus::DeploymentPos(i), nStartTime, nTimeout);
found = true;
LogPrintf("Setting BIP9 activation parameters for %s to start=%ld, timeout=%ld\n", vDeploymentParams[0], nStartTime, nTimeout);
break;
}
}
if (!found) {
return InitError(strprintf("Invalid deployment (%s)", vDeploymentParams[0]));
}
}
}
// ********************************************************* Step 4: application initialization: dir lock, daemonize, pidfile, debug log
// Initialize elliptic curve code

View File

@ -122,6 +122,10 @@ BOOST_AUTO_TEST_CASE(siphash)
hasher3.Write(uint64_t(x)|(uint64_t(x+1)<<8)|(uint64_t(x+2)<<16)|(uint64_t(x+3)<<24)|
(uint64_t(x+4)<<32)|(uint64_t(x+5)<<40)|(uint64_t(x+6)<<48)|(uint64_t(x+7)<<56));
}
CHashWriter ss(SER_DISK, CLIENT_VERSION);
ss << CTransaction();
BOOST_CHECK_EQUAL(SipHashUint256(1, 2, ss.GetHash()), 0x79751e980c2a0a35ULL);
}
BOOST_AUTO_TEST_SUITE_END()