// Copyright (c) 2012-2018 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include bool CCoinsView::GetAnchorAt(const uint256 &rt, ZCIncrementalMerkleTree &tree) const { return false; } bool CCoinsView::GetNullifier(const uint256 &nullifier) const { return false; } bool CCoinsView::GetCoin(const COutPoint &outpoint, Coin &coin) const { return false; } uint256 CCoinsView::GetBestBlock() const { return uint256(); } uint256 CCoinsView::GetBestAnchor() const { return uint256(); }; std::vector CCoinsView::GetHeadBlocks() const { return std::vector(); } bool CCoinsView::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock, const uint256 &hashAnchor, CAnchorsMap &mapAnchors, CNullifiersMap &mapNullifiers) { return false; } CCoinsViewCursor *CCoinsView::Cursor() const { return nullptr; } bool CCoinsView::HaveCoin(const COutPoint &outpoint) const { Coin coin; return GetCoin(outpoint, coin); } CCoinsViewBacked::CCoinsViewBacked(CCoinsView *viewIn) : base(viewIn) { } bool CCoinsViewBacked::GetAnchorAt(const uint256 &rt, ZCIncrementalMerkleTree &tree) const { return base->GetAnchorAt(rt, tree); } bool CCoinsViewBacked::GetNullifier(const uint256 &nullifier) const { return base->GetNullifier(nullifier); } bool CCoinsViewBacked::GetCoin(const COutPoint &outpoint, Coin &coin) const { return base->GetCoin(outpoint, coin); } bool CCoinsViewBacked::HaveCoin(const COutPoint &outpoint) const { return base->HaveCoin(outpoint); } uint256 CCoinsViewBacked::GetBestBlock() const { return base->GetBestBlock(); } uint256 CCoinsViewBacked::GetBestAnchor() const { return base->GetBestAnchor(); } std::vector CCoinsViewBacked::GetHeadBlocks() const { return base->GetHeadBlocks(); } void CCoinsViewBacked::SetBackend(CCoinsView &viewIn) { base = &viewIn; } bool CCoinsViewBacked::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock, const uint256 &hashAnchor, CAnchorsMap &mapAnchors, CNullifiersMap &mapNullifiers) { return base->BatchWrite(mapCoins, hashBlock, hashAnchor, mapAnchors, mapNullifiers); } CCoinsViewCursor *CCoinsViewBacked::Cursor() const { return base->Cursor(); } size_t CCoinsViewBacked::EstimateSize() const { return base->EstimateSize(); } SaltedOutpointHasher::SaltedOutpointHasher() : k0(GetRand(std::numeric_limits::max())), k1(GetRand(std::numeric_limits::max())) {} SaltedUint256Hasher::SaltedUint256Hasher() : k0(GetRand(std::numeric_limits::max())), k1(GetRand(std::numeric_limits::max())) {} CCoinsViewCache::CCoinsViewCache(CCoinsView *baseIn) : CCoinsViewBacked(baseIn), cachedCoinsUsage(0) {} size_t CCoinsViewCache::DynamicMemoryUsage() const { return memusage::DynamicUsage(cacheCoins) + cachedCoinsUsage; } CCoinsMap::iterator CCoinsViewCache::FetchCoin(const COutPoint &outpoint) const { CCoinsMap::iterator it = cacheCoins.find(outpoint); if (it != cacheCoins.end()) return it; Coin tmp; if (!base->GetCoin(outpoint, tmp)) return cacheCoins.end(); CCoinsMap::iterator ret = cacheCoins.emplace(std::piecewise_construct, std::forward_as_tuple(outpoint), std::forward_as_tuple(std::move(tmp))).first; if (ret->second.coin.IsSpent()) { // The parent only has an empty entry for this outpoint; we can consider our // version as fresh. ret->second.flags = CCoinsCacheEntry::FRESH; } cachedCoinsUsage += ret->second.coin.DynamicMemoryUsage(); return ret; } bool CCoinsViewCache::GetAnchorAt(const uint256 &rt, ZCIncrementalMerkleTree &tree) const { CAnchorsMap::const_iterator it = cacheAnchors.find(rt); if (it != cacheAnchors.end()) { if (it->second.entered) { tree = it->second.tree; return true; } else { return false; } } if (!base->GetAnchorAt(rt, tree)) { return false; } CAnchorsMap::iterator ret = cacheAnchors.insert(std::make_pair(rt, CAnchorsCacheEntry())).first; ret->second.entered = true; ret->second.tree = tree; cachedCoinsUsage += ret->second.tree.DynamicMemoryUsage(); return true; } bool CCoinsViewCache::GetNullifier(const uint256 &nullifier) const { CNullifiersMap::iterator it = cacheNullifiers.find(nullifier); if (it != cacheNullifiers.end()) return it->second.entered; CNullifiersCacheEntry entry; bool tmp = base->GetNullifier(nullifier); entry.entered = tmp; cacheNullifiers.insert(std::make_pair(nullifier, entry)); return tmp; } void CCoinsViewCache::PushAnchor(const ZCIncrementalMerkleTree &tree) { uint256 newrt = tree.root(); auto currentRoot = GetBestAnchor(); // We don't want to overwrite an anchor we already have. // This occurs when a block doesn't modify mapAnchors at all, // because there are no joinsplits. We could get around this a // different way (make all blocks modify mapAnchors somehow) // but this is simpler to reason about. if (currentRoot != newrt) { auto insertRet = cacheAnchors.insert(std::make_pair(newrt, CAnchorsCacheEntry())); CAnchorsMap::iterator ret = insertRet.first; ret->second.entered = true; ret->second.tree = tree; ret->second.flags = CAnchorsCacheEntry::DIRTY; if (insertRet.second) { // An insert took place cachedCoinsUsage += ret->second.tree.DynamicMemoryUsage(); } hashAnchor = newrt; } } void CCoinsViewCache::PopAnchor(const uint256 &newrt) { auto currentRoot = GetBestAnchor(); // Blocks might not change the commitment tree, in which // case restoring the "old" anchor during a reorg must // have no effect. if (currentRoot != newrt) { // Bring the current best anchor into our local cache // so that its tree exists in memory. { ZCIncrementalMerkleTree tree; assert(GetAnchorAt(currentRoot, tree)); } // Mark the anchor as unentered, removing it from view cacheAnchors[currentRoot].entered = false; // Mark the cache entry as dirty so it's propagated cacheAnchors[currentRoot].flags = CAnchorsCacheEntry::DIRTY; // Mark the new root as the best anchor hashAnchor = newrt; } } void CCoinsViewCache::SetNullifier(const uint256 &nullifier, bool spent) { std::pair ret = cacheNullifiers.insert(std::make_pair(nullifier, CNullifiersCacheEntry())); ret.first->second.entered = spent; ret.first->second.flags |= CNullifiersCacheEntry::DIRTY; } bool CCoinsViewCache::GetCoin(const COutPoint &outpoint, Coin &coin) const { CCoinsMap::const_iterator it = FetchCoin(outpoint); if (it != cacheCoins.end()) { coin = it->second.coin; return !coin.IsSpent(); } return false; } void CCoinsViewCache::AddCoin(const COutPoint &outpoint, Coin&& coin, bool possible_overwrite) { assert(!coin.IsSpent()); if (coin.out.scriptPubKey.IsUnspendable()) return; CCoinsMap::iterator it; bool inserted; std::tie(it, inserted) = cacheCoins.emplace(std::piecewise_construct, std::forward_as_tuple(outpoint), std::tuple<>()); bool fresh = false; if (!inserted) { cachedCoinsUsage -= it->second.coin.DynamicMemoryUsage(); } if (!possible_overwrite) { if (!it->second.coin.IsSpent()) { throw std::logic_error("Adding new coin that replaces non-pruned entry"); } fresh = !(it->second.flags & CCoinsCacheEntry::DIRTY); } it->second.coin = std::move(coin); it->second.flags |= CCoinsCacheEntry::DIRTY | (fresh ? CCoinsCacheEntry::FRESH : 0); cachedCoinsUsage += it->second.coin.DynamicMemoryUsage(); } void AddCoins(CCoinsViewCache& cache, const CTransaction &tx, int nHeight, bool check) { bool fCoinbase = tx.IsCoinBase(); const uint256& txid = tx.GetHash(); for (size_t i = 0; i < tx.vout.size(); ++i) { bool overwrite = check ? cache.HaveCoin(COutPoint(txid, i)) : fCoinbase; // Always set the possible_overwrite flag to AddCoin for coinbase txn, in order to correctly // deal with the pre-BIP30 occurrences of duplicate coinbase transactions. cache.AddCoin(COutPoint(txid, i), Coin(tx.vout[i], nHeight, fCoinbase), overwrite); } } bool CCoinsViewCache::SpendCoin(const COutPoint &outpoint, Coin* moveout) { CCoinsMap::iterator it = FetchCoin(outpoint); if (it == cacheCoins.end()) return false; cachedCoinsUsage -= it->second.coin.DynamicMemoryUsage(); if (moveout) { *moveout = std::move(it->second.coin); } if (it->second.flags & CCoinsCacheEntry::FRESH) { cacheCoins.erase(it); } else { it->second.flags |= CCoinsCacheEntry::DIRTY; it->second.coin.Clear(); } return true; } static const Coin coinEmpty; const Coin& CCoinsViewCache::AccessCoin(const COutPoint &outpoint) const { CCoinsMap::const_iterator it = FetchCoin(outpoint); if (it == cacheCoins.end()) { return coinEmpty; } else { return it->second.coin; } } bool CCoinsViewCache::HaveCoin(const COutPoint &outpoint) const { CCoinsMap::const_iterator it = FetchCoin(outpoint); return (it != cacheCoins.end() && !it->second.coin.IsSpent()); } bool CCoinsViewCache::HaveCoinInCache(const COutPoint &outpoint) const { CCoinsMap::const_iterator it = cacheCoins.find(outpoint); return (it != cacheCoins.end() && !it->second.coin.IsSpent()); } uint256 CCoinsViewCache::GetBestBlock() const { if (hashBlock.IsNull()) hashBlock = base->GetBestBlock(); return hashBlock; } uint256 CCoinsViewCache::GetBestAnchor() const { if (hashAnchor.IsNull()) hashAnchor = base->GetBestAnchor(); return hashAnchor; } void CCoinsViewCache::SetBestBlock(const uint256 &hashBlockIn) { hashBlock = hashBlockIn; } bool CCoinsViewCache::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlockIn, const uint256 &hashAnchorIn, CAnchorsMap &mapAnchors, CNullifiersMap &mapNullifiers) { for (CCoinsMap::iterator it = mapCoins.begin(); it != mapCoins.end(); it = mapCoins.erase(it)) { // Ignore non-dirty entries (optimization). if (!(it->second.flags & CCoinsCacheEntry::DIRTY)) { continue; } CCoinsMap::iterator itUs = cacheCoins.find(it->first); if (itUs == cacheCoins.end()) { // The parent cache does not have an entry, while the child does // We can ignore it if it's both FRESH and pruned in the child if (!(it->second.flags & CCoinsCacheEntry::FRESH && it->second.coin.IsSpent())) { // Otherwise we will need to create it in the parent // and move the data up and mark it as dirty CCoinsCacheEntry& entry = cacheCoins[it->first]; entry.coin = std::move(it->second.coin); cachedCoinsUsage += entry.coin.DynamicMemoryUsage(); entry.flags = CCoinsCacheEntry::DIRTY; // We can mark it FRESH in the parent if it was FRESH in the child // Otherwise it might have just been flushed from the parent's cache // and already exist in the grandparent if (it->second.flags & CCoinsCacheEntry::FRESH) { entry.flags |= CCoinsCacheEntry::FRESH; } } } else { // Assert that the child cache entry was not marked FRESH if the // parent cache entry has unspent outputs. If this ever happens, // it means the FRESH flag was misapplied and there is a logic // error in the calling code. if ((it->second.flags & CCoinsCacheEntry::FRESH) && !itUs->second.coin.IsSpent()) { throw std::logic_error("FRESH flag misapplied to cache entry for base transaction with spendable outputs"); } // Found the entry in the parent cache if ((itUs->second.flags & CCoinsCacheEntry::FRESH) && it->second.coin.IsSpent()) { // The grandparent does not have an entry, and the child is // modified and being pruned. This means we can just delete // it from the parent. cachedCoinsUsage -= itUs->second.coin.DynamicMemoryUsage(); cacheCoins.erase(itUs); } else { // A normal modification. cachedCoinsUsage -= itUs->second.coin.DynamicMemoryUsage(); itUs->second.coin = std::move(it->second.coin); cachedCoinsUsage += itUs->second.coin.DynamicMemoryUsage(); itUs->second.flags |= CCoinsCacheEntry::DIRTY; // NOTE: It is possible the child has a FRESH flag here in // the event the entry we found in the parent is pruned. But // we must not copy that FRESH flag to the parent as that // pruned state likely still needs to be communicated to the // grandparent. } } } for (CAnchorsMap::iterator child_it = mapAnchors.begin(); child_it != mapAnchors.end();) { if (child_it->second.flags & CAnchorsCacheEntry::DIRTY) { CAnchorsMap::iterator parent_it = cacheAnchors.find(child_it->first); if (parent_it == cacheAnchors.end()) { CAnchorsCacheEntry& entry = cacheAnchors[child_it->first]; entry.entered = child_it->second.entered; entry.tree = child_it->second.tree; entry.flags = CAnchorsCacheEntry::DIRTY; cachedCoinsUsage += entry.tree.DynamicMemoryUsage(); } else { if (parent_it->second.entered != child_it->second.entered) { // The parent may have removed the entry. parent_it->second.entered = child_it->second.entered; parent_it->second.flags |= CAnchorsCacheEntry::DIRTY; } } } CAnchorsMap::iterator itOld = child_it++; mapAnchors.erase(itOld); } for (CNullifiersMap::iterator child_it = mapNullifiers.begin(); child_it != mapNullifiers.end();) { if (child_it->second.flags & CNullifiersCacheEntry::DIRTY) { // Ignore non-dirty entries (optimization). CNullifiersMap::iterator parent_it = cacheNullifiers.find(child_it->first); if (parent_it == cacheNullifiers.end()) { CNullifiersCacheEntry& entry = cacheNullifiers[child_it->first]; entry.entered = child_it->second.entered; entry.flags = CNullifiersCacheEntry::DIRTY; } else { if (parent_it->second.entered != child_it->second.entered) { parent_it->second.entered = child_it->second.entered; parent_it->second.flags |= CNullifiersCacheEntry::DIRTY; } } } CNullifiersMap::iterator itOld = child_it++; mapNullifiers.erase(itOld); } hashAnchor = hashAnchorIn; hashBlock = hashBlockIn; return true; } bool CCoinsViewCache::Flush() { bool fOk = base->BatchWrite(cacheCoins, hashBlock, hashAnchor, cacheAnchors, cacheNullifiers); cacheCoins.clear(); cacheAnchors.clear(); cacheNullifiers.clear(); cachedCoinsUsage = 0; return fOk; } void CCoinsViewCache::Uncache(const COutPoint& hash) { CCoinsMap::iterator it = cacheCoins.find(hash); if (it != cacheCoins.end() && it->second.flags == 0) { cachedCoinsUsage -= it->second.coin.DynamicMemoryUsage(); cacheCoins.erase(it); } } unsigned int CCoinsViewCache::GetCacheSize() const { return cacheCoins.size(); } CAmount CCoinsViewCache::GetValueIn(const CTransaction& tx) const { if (tx.IsCoinBase()) return 0; CAmount nResult = 0; for (unsigned int i = 0; i < tx.vin.size(); i++) nResult += AccessCoin(tx.vin[i].prevout).out.nValue; return nResult; } bool CCoinsViewCache::HaveJoinSplitRequirements(const CTransaction& tx) const { std::unordered_map intermediates; for(const JSDescription &joinsplit : tx.vjoinsplit) { for(const uint256& nullifier : joinsplit.nullifiers) { if (GetNullifier(nullifier)) { // If the nullifier is set, this transaction // double-spends! return false; } } ZCIncrementalMerkleTree tree; auto it = intermediates.find(joinsplit.anchor); if (it != intermediates.end()) { tree = it->second; } else if (!GetAnchorAt(joinsplit.anchor, tree)) { return false; } for(const uint256& commitment : joinsplit.commitments) { tree.append(commitment); } intermediates.insert(std::make_pair(tree.root(), tree)); } return true; } bool CCoinsViewCache::HaveInputs(const CTransaction& tx) const { if (!tx.IsCoinBase()) { for (unsigned int i = 0; i < tx.vin.size(); i++) { if (!HaveCoin(tx.vin[i].prevout)) { return false; } } } return true; } static const size_t MIN_TRANSACTION_OUTPUT_WEIGHT = WITNESS_SCALE_FACTOR * ::GetSerializeSize(CTxOut(), PROTOCOL_VERSION); static const size_t MAX_OUTPUTS_PER_BLOCK = MAX_BLOCK_WEIGHT / MIN_TRANSACTION_OUTPUT_WEIGHT; const Coin& AccessByTxid(const CCoinsViewCache& view, const uint256& txid) { COutPoint iter(txid, 0); while (iter.n < MAX_OUTPUTS_PER_BLOCK) { const Coin& alternate = view.AccessCoin(iter); if (!alternate.IsSpent()) return alternate; ++iter.n; } return coinEmpty; }