BTCP-Rebase/src/consensus/tx_verify.cpp

349 lines
14 KiB
C++

// Copyright (c) 2017-2017 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <consensus/tx_verify.h>
#include <consensus/consensus.h>
#include <primitives/transaction.h>
#include <script/interpreter.h>
#include <consensus/joinsplit.h>
#include <consensus/validation.h>
// TODO remove the following dependencies
#include <chain.h>
#include <coins.h>
#include <util.h>
#include <utilmoneystr.h>
#include <zcash/Zcash.h>
#include <zcash/Proof.hpp>
bool IsFinalTx(const CTransaction &tx, int nBlockHeight, int64_t nBlockTime)
{
if (tx.nLockTime == 0)
return true;
if ((int64_t)tx.nLockTime < ((int64_t)tx.nLockTime < LOCKTIME_THRESHOLD ? (int64_t)nBlockHeight : nBlockTime))
return true;
for (const auto& txin : tx.vin) {
if (!(txin.nSequence == CTxIn::SEQUENCE_FINAL))
return false;
}
return true;
}
std::pair<int, int64_t> CalculateSequenceLocks(const CTransaction &tx, int flags, std::vector<int>* prevHeights, const CBlockIndex& block)
{
assert(prevHeights->size() == tx.vin.size());
// Will be set to the equivalent height- and time-based nLockTime
// values that would be necessary to satisfy all relative lock-
// time constraints given our view of block chain history.
// The semantics of nLockTime are the last invalid height/time, so
// use -1 to have the effect of any height or time being valid.
int nMinHeight = -1;
int64_t nMinTime = -1;
// tx.nVersion is signed integer so requires cast to unsigned otherwise
// we would be doing a signed comparison and half the range of nVersion
// wouldn't support BIP 68.
bool fEnforceBIP68 = static_cast<uint32_t>(tx.nVersion) >= 3
&& flags & LOCKTIME_VERIFY_SEQUENCE;
// Do not enforce sequence numbers as a relative lock time
// unless we have been instructed to
if (!fEnforceBIP68) {
return std::make_pair(nMinHeight, nMinTime);
}
for (size_t txinIndex = 0; txinIndex < tx.vin.size(); txinIndex++) {
const CTxIn& txin = tx.vin[txinIndex];
// Sequence numbers with the most significant bit set are not
// treated as relative lock-times, nor are they given any
// consensus-enforced meaning at this point.
if (txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_DISABLE_FLAG) {
// The height of this input is not relevant for sequence locks
(*prevHeights)[txinIndex] = 0;
continue;
}
int nCoinHeight = (*prevHeights)[txinIndex];
if (txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG) {
int64_t nCoinTime = block.GetAncestor(std::max(nCoinHeight-1, 0))->GetMedianTimePast();
// NOTE: Subtract 1 to maintain nLockTime semantics
// BIP 68 relative lock times have the semantics of calculating
// the first block or time at which the transaction would be
// valid. When calculating the effective block time or height
// for the entire transaction, we switch to using the
// semantics of nLockTime which is the last invalid block
// time or height. Thus we subtract 1 from the calculated
// time or height.
// Time-based relative lock-times are measured from the
// smallest allowed timestamp of the block containing the
// txout being spent, which is the median time past of the
// block prior.
nMinTime = std::max(nMinTime, nCoinTime + (int64_t)((txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_MASK) << CTxIn::SEQUENCE_LOCKTIME_GRANULARITY) - 1);
} else {
nMinHeight = std::max(nMinHeight, nCoinHeight + (int)(txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_MASK) - 1);
}
}
return std::make_pair(nMinHeight, nMinTime);
}
bool EvaluateSequenceLocks(const CBlockIndex& block, std::pair<int, int64_t> lockPair)
{
assert(block.pprev);
int64_t nBlockTime = block.pprev->GetMedianTimePast();
if (lockPair.first >= block.nHeight || lockPair.second >= nBlockTime)
return false;
return true;
}
bool SequenceLocks(const CTransaction &tx, int flags, std::vector<int>* prevHeights, const CBlockIndex& block)
{
return EvaluateSequenceLocks(block, CalculateSequenceLocks(tx, flags, prevHeights, block));
}
unsigned int GetLegacySigOpCount(const CTransaction& tx)
{
unsigned int nSigOps = 0;
for (const auto& txin : tx.vin)
{
nSigOps += txin.scriptSig.GetSigOpCount(false);
}
for (const auto& txout : tx.vout)
{
nSigOps += txout.scriptPubKey.GetSigOpCount(false);
}
return nSigOps;
}
unsigned int GetP2SHSigOpCount(const CTransaction& tx, const CCoinsViewCache& inputs)
{
if (tx.IsCoinBase())
return 0;
unsigned int nSigOps = 0;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
const Coin& coin = inputs.AccessCoin(tx.vin[i].prevout);
assert(!coin.IsSpent());
const CTxOut &prevout = coin.out;
if (prevout.scriptPubKey.IsPayToScriptHash())
nSigOps += prevout.scriptPubKey.GetSigOpCount(tx.vin[i].scriptSig);
}
return nSigOps;
}
int64_t GetTransactionSigOpCost(const CTransaction& tx, const CCoinsViewCache& inputs, int flags)
{
int64_t nSigOps = GetLegacySigOpCount(tx) * WITNESS_SCALE_FACTOR;
if (tx.IsCoinBase())
return nSigOps;
if (flags & SCRIPT_VERIFY_P2SH) {
nSigOps += GetP2SHSigOpCount(tx, inputs) * WITNESS_SCALE_FACTOR;
}
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
const Coin& coin = inputs.AccessCoin(tx.vin[i].prevout);
assert(!coin.IsSpent());
const CTxOut &prevout = coin.out;
nSigOps += CountWitnessSigOps(tx.vin[i].scriptSig, prevout.scriptPubKey, &tx.vin[i].scriptWitness, flags);
}
return nSigOps;
}
bool CheckTransaction(const CTransaction& tx, CValidationState &state, bool fCheckDuplicateInputs)
{
// Check transaction version
if (tx.nVersion < MIN_TX_VERSION) {
return state.DoS(100, error("CheckTransaction(): version too low"),
REJECT_INVALID, "bad-txns-version-too-low");
}
// Basic checks that don't depend on any context
// Transactions can contain empty `vin` and `vout` so long as
// `vjoinsplit` is non-empty.
if (tx.vin.empty() && tx.vjoinsplit.empty())
return state.DoS(10, error("CheckTransaction(): vin empty"),
REJECT_INVALID, "bad-txns-vin-empty");
if (tx.vout.empty() && tx.vjoinsplit.empty())
return state.DoS(10, error("CheckTransaction(): vout empty"),
REJECT_INVALID, "bad-txns-vout-empty");
// Size limits (this doesn't take the witness into account, as that hasn't been checked for malleability)
if (::GetSerializeSize(tx, PROTOCOL_VERSION | SERIALIZE_TRANSACTION_NO_WITNESS) * WITNESS_SCALE_FACTOR > MAX_BLOCK_WEIGHT)
return state.DoS(100, false, REJECT_INVALID, "bad-txns-oversize");
// Check for negative or overflow output values
CAmount nValueOut = 0;
CAmount nValueIn = 0;
for (const auto& txout : tx.vout)
{
if (txout.nValue < 0)
return state.DoS(100, false, REJECT_INVALID, "bad-txns-vout-negative");
if (txout.nValue > MAX_MONEY)
return state.DoS(100, false, REJECT_INVALID, "bad-txns-vout-toolarge");
nValueOut += txout.nValue;
if (!MoneyRange(nValueOut))
return state.DoS(100, false, REJECT_INVALID, "bad-txns-txouttotal-toolarge");
}
// Ensure that joinsplit values are well-formed
for (const JSDescription& joinsplit : tx.vjoinsplit)
{
if (joinsplit.vpub_old < 0) {
return state.DoS(100, error("CheckTransaction(): joinsplit.vpub_old negative"),
REJECT_INVALID, "bad-txns-vpub_old-negative");
}
if (joinsplit.vpub_new < 0) {
return state.DoS(100, error("CheckTransaction(): joinsplit.vpub_new negative"),
REJECT_INVALID, "bad-txns-vpub_new-negative");
}
if (joinsplit.vpub_old > MAX_MONEY) {
return state.DoS(100, error("CheckTransaction(): joinsplit.vpub_old too high"),
REJECT_INVALID, "bad-txns-vpub_old-toolarge");
}
if (joinsplit.vpub_new > MAX_MONEY) {
return state.DoS(100, error("CheckTransaction(): joinsplit.vpub_new too high"),
REJECT_INVALID, "bad-txns-vpub_new-toolarge");
}
if (joinsplit.vpub_new != 0 && joinsplit.vpub_old != 0) {
return state.DoS(100, error("CheckTransaction(): joinsplit.vpub_new and joinsplit.vpub_old both nonzero"),
REJECT_INVALID, "bad-txns-vpubs-both-nonzero");
}
nValueOut += joinsplit.vpub_old;
if (!MoneyRange(nValueOut)) {
return state.DoS(100, error("CheckTransaction(): txout total out of range"),
REJECT_INVALID, "bad-txns-txouttotal-toolarge");
}
nValueIn += joinsplit.vpub_new;
if (!MoneyRange(joinsplit.vpub_new) || !MoneyRange(nValueIn)) {
return state.DoS(100, error("CheckTransaction(): txin total out of range"),
REJECT_INVALID, "bad-txns-txintotal-toolarge");
}
}
// Check for duplicate inputs - note that this check is slow so we skip it in CheckBlock
if (fCheckDuplicateInputs) {
std::set<COutPoint> vInOutPoints;
for (const auto& txin : tx.vin)
{
if (!vInOutPoints.insert(txin.prevout).second)
return state.DoS(100, false, REJECT_INVALID, "bad-txns-inputs-duplicate");
}
// Check for duplicate joinsplit nullifiers in this transaction
std::set<uint256> vJoinSplitNullifiers;
for (const JSDescription& joinsplit : tx.vjoinsplit)
{
for (const uint256& nf : joinsplit.nullifiers)
{
if (vJoinSplitNullifiers.count(nf))
return state.DoS(100, error("CheckTransaction(): duplicate nullifiers"),
REJECT_INVALID, "bad-joinsplits-nullifiers-duplicate");
vJoinSplitNullifiers.insert(nf);
}
}
}
if (tx.IsCoinBase())
{
// There should be no joinsplits in a coinbase transaction
if (tx.vjoinsplit.size() > 0)
return state.DoS(100, error("CheckTransaction(): coinbase has joinsplits"),
REJECT_INVALID, "bad-cb-has-joinsplits");
if (tx.vin[0].scriptSig.size() < 2 || tx.vin[0].scriptSig.size() > 100)
return state.DoS(100, false, REJECT_INVALID, "bad-cb-length");
}
else
{
for (const auto& txin : tx.vin)
if (txin.prevout.IsNull())
return state.DoS(10, false, REJECT_INVALID, "bad-txns-prevout-null");
}
return true;
}
bool Consensus::CheckTxInputs(const CTransaction& tx, CValidationState& state, const CCoinsViewCache& inputs, int nSpendHeight, CAmount& txfee, bool fCoinbaseMustBeProtected, uint64_t forkStartHeight, uint64_t forkHeightRange)
{
// are the actual inputs available?
if (!inputs.HaveInputs(tx)) {
return state.DoS(100, false, REJECT_INVALID, "bad-txns-inputs-missingorspent", false,
strprintf("%s: inputs missing/spent", __func__));
}
// are the JoinSplit's requirements met?
if (!inputs.HaveJoinSplitRequirements(tx)) {
return state.Invalid(error("CheckInputs(): %s JoinSplit requirements not met", tx.GetHash().ToString()));
}
CAmount nValueIn = 0;
for (unsigned int i = 0; i < tx.vin.size(); ++i) {
const COutPoint &prevout = tx.vin[i].prevout;
const Coin& coin = inputs.AccessCoin(prevout);
assert(!coin.IsSpent());
// If prev is coinbase, check that it's matured
if (coin.IsCoinBase()) {
if(nSpendHeight - coin.nHeight < COINBASE_MATURITY) {
return state.Invalid(false,
REJECT_INVALID, "bad-txns-premature-spend-of-coinbase",
strprintf("tried to spend coinbase at depth %d", nSpendHeight - coin.nHeight));
}
// Ensure that coinbases cannot be spent to transparent outputs
// Disabled on regtest
if (fCoinbaseMustBeProtected && (coin.nHeight <= forkStartHeight || coin.nHeight > forkStartHeight + forkHeightRange) &&
!tx.vout.empty()) {
return state.Invalid(
error("CheckInputs(): tried to spend coinbase with transparent outputs"),
REJECT_INVALID, "bad-txns-coinbase-spend-has-transparent-outputs");
}
}
// Check for negative or overflow input values
nValueIn += coin.out.nValue;
if (!MoneyRange(coin.out.nValue) || !MoneyRange(nValueIn)) {
return state.DoS(100, false, REJECT_INVALID, "bad-txns-inputvalues-outofrange");
}
}
nValueIn += tx.GetJoinSplitValueIn();
if (!MoneyRange(tx.GetJoinSplitValueIn()) || !MoneyRange(nValueIn))
return state.DoS(100, error("CheckInputs(): vpub_old values out of range"),
REJECT_INVALID, "bad-txns-inputvalues-outofrange");
const CAmount value_out = tx.GetValueOut();
if (nValueIn < value_out) {
return state.DoS(100, false, REJECT_INVALID, "bad-txns-in-belowout", false,
strprintf("value in (%s) < value out (%s)", FormatMoney(nValueIn), FormatMoney(value_out)));
}
// Tally transaction fees
const CAmount txfee_aux = nValueIn - value_out;
if (!MoneyRange(txfee_aux)) {
return state.DoS(100, false, REJECT_INVALID, "bad-txns-fee-outofrange");
}
txfee = txfee_aux;
return true;
}