bitcore/util/util.js

483 lines
12 KiB
JavaScript

var crypto = require('crypto');
var bignum = require('bignum');
var Binary = require('binary');
var Put = require('bufferput');
var buffertools = require('buffertools');
var jssha = require('jssha');
var browser;
var inBrowser = !process.versions;
if (inBrowser) {
browser = require('../browser/vendor-bundle.js');
}
var sha256 = exports.sha256 = function(data) {
return new Buffer(crypto.createHash('sha256').update(data).digest('binary'), 'binary');
};
var sha512hmac = exports.sha512hmac = function (data, key) {
if (inBrowser) {
var j = new jssha(data.toString('hex'), 'HEX');
var hash = j.getHMAC(key.toString('hex'), "HEX", "SHA-512", "HEX");
hash = new Buffer(hash, 'hex');
return hash;
};
var hmac = crypto.createHmac('sha512', key);
var hash = hmac.update(data).digest();
return hash;
};
var ripe160 = exports.ripe160 = function (data) {
if (!Buffer.isBuffer(data)) {
throw new Error('arg should be a buffer');
}
if (inBrowser) {
var w = new browser.crypto31.lib.WordArray.init(Crypto.util.bytesToWords(data), data.length);
var wordArray = browser.crypto31.RIPEMD160(w);
var words = wordArray.words;
var answer = [];
for (var b = 0; b < words.length * 32; b += 8) {
answer.push((words[b >>> 5] >>> (24 - b % 32)) & 0xFF);
}
return new Buffer(answer, 'hex');
}
return new Buffer(crypto.createHash('rmd160').update(data).digest('binary'), 'binary');
};
var sha1 = exports.sha1 = function(data) {
return new Buffer(crypto.createHash('sha1').update(data).digest('binary'), 'binary');
};
var twoSha256 = exports.twoSha256 = function(data) {
return sha256(sha256(data));
};
var sha256ripe160 = exports.sha256ripe160 = function(data) {
return ripe160(sha256(data));
};
/**
* Format a block hash like the official client does.
*/
var formatHash = exports.formatHash = function(hash) {
var hashEnd = new Buffer(10);
hash.copy(hashEnd, 0, 22, 32);
return buffertools.reverse(hashEnd).toString('hex');
};
/**
* Display the whole hash, as hex, in correct endian order.
*/
var formatHashFull = exports.formatHashFull = function(hash) {
var copy = new Buffer(hash.length);
hash.copy(copy);
var hex = buffertools.toHex(buffertools.reverse(copy));
return hex;
};
/**
* Format a block hash like Block Explorer does.
*
* Formats a block hash by removing leading zeros and truncating to 10 characters.
*/
var formatHashAlt = exports.formatHashAlt = function(hash) {
var hex = formatHashFull(hash);
hex = hex.replace(/^0*/, '');
return hex.substr(0, 10);
};
var formatBuffer = exports.formatBuffer = function(buffer, maxLen) {
// Calculate amount of bytes to display
if (maxLen === null) {
maxLen = 10;
}
if (maxLen > buffer.length || maxLen === 0) {
maxLen = buffer.length;
}
// Copy those bytes into a temporary buffer
var temp = new Buffer(maxLen);
buffer.copy(temp, 0, 0, maxLen);
// Format as string
var output = buffertools.toHex(temp);
if (temp.length < buffer.length) {
output += "...";
}
return output;
};
var valueToBigInt = exports.valueToBigInt = function(valueBuffer) {
if (Buffer.isBuffer(valueBuffer)) {
return bignum.fromBuffer(valueBuffer, {
endian: 'little',
size: 8
});
} else {
return valueBuffer;
}
};
var bigIntToValue = exports.bigIntToValue = function(valueBigInt) {
if (Buffer.isBuffer(valueBigInt)) {
return valueBigInt;
} else {
return valueBigInt.toBuffer({
endian: 'little',
size: 8
});
}
};
var fitsInNBits = function(integer, n) {
// TODO: make this efficient!!!
return integer.toString(2).replace('-', '').length < n;
};
exports.bytesNeededToStore = bytesNeededToStore = function(integer) {
if (integer === 0) return 0;
return Math.ceil(((integer).toString(2).replace('-', '').length + 1) / 8);
};
exports.negativeBuffer = negativeBuffer = function(b) {
// implement two-complement negative
var c = new Buffer(b.length);
// negate each byte
for (var i = 0; i < b.length; i++) {
c[i] = ~b[i];
if (c[i] < 0) c[i] += 256;
}
// add one
for (var i = b.length - 1; i >= 0; i--) {
c[i] += 1;
if (c[i] >= 256) c[i] -= 256;
if (c[i] !== 0) break;
}
return c;
};
/*
* Transforms an integer into a buffer using two-complement encoding
* For example, 1 is encoded as 01 and -1 is encoded as ff
* For more info see:
* http://en.wikipedia.org/wiki/Signed_number_representations#Two.27s_complement
*/
exports.intToBuffer2C = function(integer) {
var size = bytesNeededToStore(integer);
var buf = new Put();
var s = integer.toString(16);
var neg = s[0] === '-';
s = s.replace('-', '');
for (var i = 0; i < size; i++) {
var si = s.substring(s.length - 2 * (i + 1), s.length - 2 * (i));
if (si.lenght === 1) {
si = '0' + si;
}
var pi = parseInt(si, 16);
buf.word8(pi);
}
var ret = buf.buffer();
if (neg) {
ret = buffertools.reverse(ret);
ret = negativeBuffer(ret);
ret = buffertools.reverse(ret);
}
return ret;
};
var padSign = function(b) {
var c;
if (b[0] & 0x80) {
c = new Buffer(b.length + 1);
b.copy(c, 1);
c[0] = 0;
} else {
c = b;
}
return c;
}
/*
* Transforms an integer into a buffer using sign+magnitude encoding
* For example, 1 is encoded as 01 and -1 is encoded as 81
* For more info see:
* http://en.wikipedia.org/wiki/Signed_number_representations#Signed_magnitude_representation
*/
exports.intToBufferSM = function(v) {
if ("number" === typeof v) {
v = bignum(v);
}
var b, c;
var cmp = v.cmp(0);
if (cmp > 0) {
b = v.toBuffer();
c = padSign(b);
c = buffertools.reverse(c);
} else if (cmp == 0) {
c = new Buffer([]);
} else {
b = v.neg().toBuffer();
c = padSign(b);
c[0] |= 0x80;
c = buffertools.reverse(c);
}
return c;
};
/*
* Reverse of intToBufferSM
*/
exports.bufferSMToInt = function(v) {
if (!v.length) {
return bignum(0);
}
// Arithmetic operands must be in range [-2^31...2^31]
if (v.length > 4) {
throw new Error('Bigint cast overflow (> 4 bytes)');
}
var w = new Buffer(v.length);
v.copy(w);
w = buffertools.reverse(w);
var isNeg = w[0] & 0x80;
if (isNeg) {
w[0] &= 0x7f;
return bignum.fromBuffer(w).neg();
} else {
return bignum.fromBuffer(w);
}
};
var formatValue = exports.formatValue = function(valueBuffer) {
var value = valueToBigInt(valueBuffer).toString();
var integerPart = value.length > 8 ? value.substr(0, value.length - 8) : '0';
var decimalPart = value.length > 8 ? value.substr(value.length - 8) : value;
while (decimalPart.length < 8) {
decimalPart = "0" + decimalPart;
}
decimalPart = decimalPart.replace(/0*$/, '');
while (decimalPart.length < 2) {
decimalPart += "0";
}
return integerPart + "." + decimalPart;
};
var reFullVal = /^\s*(\d+)\.(\d+)/;
var reFracVal = /^\s*\.(\d+)/;
var reWholeVal = /^\s*(\d+)/;
function padFrac(frac) {
frac = frac.substr(0, 8); //truncate to 8 decimal places
while (frac.length < 8)
frac = frac + '0';
return frac;
}
function parseFullValue(res) {
return bignum(res[1]).mul('100000000').add(padFrac(res[2]));
}
function parseFracValue(res) {
return bignum(padFrac(res[1]));
}
function parseWholeValue(res) {
return bignum(res[1]).mul('100000000');
}
exports.parseValue = function parseValue(valueStr) {
if (typeof valueStr !== 'string')
valueStr = valueStr.toString();
var res = valueStr.match(reFullVal);
if (res)
return parseFullValue(res);
res = valueStr.match(reFracVal);
if (res)
return parseFracValue(res);
res = valueStr.match(reWholeVal);
if (res)
return parseWholeValue(res);
return undefined;
};
// Utility that synchronizes function calls based on a key
var createSynchrotron = exports.createSynchrotron = function(fn) {
var table = {};
return function(key) {
var args = Array.prototype.slice.call(arguments);
var run = function() {
// Function fn() will call when it finishes
args[0] = function next() {
if (table[key]) {
if (table[key].length) {
table[key].shift()();
} else {
delete table[key];
}
}
};
fn.apply(null, args);
};
if (!table[key]) {
table[key] = [];
run();
} else {
table[key].push(run);
}
};
};
/**
* Decode difficulty bits.
*
* This function calculates the difficulty target given the difficulty bits.
*/
var decodeDiffBits = exports.decodeDiffBits = function(diffBits, asBigInt) {
diffBits = +diffBits;
var target = bignum(diffBits & 0xffffff);
/*
* shiftLeft is not implemented on the bignum browser
*
* target = target.shiftLeft(8*((diffBits >>> 24) - 3));
*/
var mov = 8*((diffBits >>> 24) - 3);
while (mov-- > 0)
target = target.mul(2);
if (asBigInt) {
return target;
}
// Convert to buffer
var diffBuf = target.toBuffer();
var targetBuf = new Buffer(32);
buffertools.fill(targetBuf, 0);
diffBuf.copy(targetBuf, 32 - diffBuf.length);
return targetBuf;
};
/**
* Encode difficulty bits.
*
* This function calculates the compact difficulty, given a difficulty target.
*/
var encodeDiffBits = exports.encodeDiffBits = function encodeDiffBits(target) {
if (Buffer.isBuffer(target)) {
target = bignum.fromBuffer(target);
} else if ("function" === typeof target.toBuffer) { // duck-typing bignum
// Nothing to do
} else {
throw new Error("Incorrect variable type for difficulty");
}
var mpiBuf = target.toBuffer("mpint");
var size = mpiBuf.length - 4;
var compact = size << 24;
if (size >= 1) compact |= mpiBuf[4] << 16;
if (size >= 2) compact |= mpiBuf[5] << 8;
if (size >= 3) compact |= mpiBuf[6];
return compact;
};
/**
* Calculate "difficulty".
*
* This function calculates the maximum difficulty target divided by the given
* difficulty target.
*/
var calcDifficulty = exports.calcDifficulty = function(target) {
if (!Buffer.isBuffer(target)) {
target = decodeDiffBits(target);
}
var targetBigint = bignum.fromBuffer(target, {
order: 'forward'
});
var maxBigint = bignum.fromBuffer(MAX_TARGET, {
order: 'forward'
});
return maxBigint.div(targetBigint).toNumber();
};
var reverseBytes32 = exports.reverseBytes32 = function(data) {
if (data.length % 4) {
throw new Error("Util.reverseBytes32(): Data length must be multiple of 4");
}
var put = new Put();
var parser = Binary.parse(data);
while (!parser.eof()) {
var word = parser.word32le('word').vars.word;
put.word32be(word);
}
return put.buffer();
};
var getVarIntSize = exports.getVarIntSize = function getVarIntSize(i) {
if (i < 253) {
// unsigned char
return 1;
} else if (i < 0x10000) {
// unsigned short (LE)
return 3;
} else if (i < 0x100000000) {
// unsigned int (LE)
return 5;
} else {
// unsigned long long (LE)
return 9;
}
};
var varIntBuf = exports.varIntBuf = function varIntBuf(n) {
var buf = undefined;
if (n < 253) {
buf = new Buffer(1);
buf.writeUInt8(n, 0);
} else if (n < 0x10000) {
buf = new Buffer(1 + 2);
buf.writeUInt8(253, 0);
buf.writeUInt16LE(n, 1);
} else if (n < 0x100000000) {
buf = new Buffer(1 + 4);
buf.writeUInt8(254, 0);
buf.writeUInt32LE(n, 1);
} else {
buf = new Buffer(1 + 8);
buf.writeUInt8(255, 0);
buf.writeInt32LE(n & -1, 1);
buf.writeUInt32LE(Math.floor(n / 0x100000000), 5);
}
return buf;
};
var varStrBuf = exports.varStrBuf = function varStrBuf(s) {
return Buffer.concat([varIntBuf(s.length), s]);
};
// Initializations
exports.NULL_HASH = buffertools.fill(new Buffer(32), 0);
exports.EMPTY_BUFFER = new Buffer(0);
exports.ZERO_VALUE = buffertools.fill(new Buffer(8), 0);
var INT64_MAX = new Buffer('ffffffffffffffff', 'hex');
exports.INT64_MAX = INT64_MAX;
// How much of Bitcoin's internal integer coin representation
// makes 1 BTC
exports.COIN = 100000000;
var MAX_TARGET = exports.MAX_TARGET = new Buffer('00000000FFFF0000000000000000000000000000000000000000000000000000', 'hex');