/** * * \file * * \brief This module contains NMC1000 SPI protocol bus APIs implementation. * * Copyright (c) 2016-2021 Microchip Technology Inc. and its subsidiaries. * * \asf_license_start * * \page License * * Subject to your compliance with these terms, you may use Microchip * software and any derivatives exclusively with Microchip products. * It is your responsibility to comply with third party license terms applicable * to your use of third party software (including open source software) that * may accompany Microchip software. * * THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, * WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE, * INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, * AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE * LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL * LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE * SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE * POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT * ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY * RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, * THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE. * * \asf_license_stop * */ #include "common/include/nm_common.h" #ifdef CONF_WINC_USE_SPI #include "bus_wrapper/include/nm_bus_wrapper.h" #include "nmspi.h" #define NMI_PERIPH_REG_BASE 0x1000 #define NMI_INTR_REG_BASE (NMI_PERIPH_REG_BASE+0xa00) #define NMI_CHIPID (NMI_PERIPH_REG_BASE) #define NMI_PIN_MUX_0 (NMI_PERIPH_REG_BASE + 0x408) #define NMI_INTR_ENABLE (NMI_INTR_REG_BASE) #define NMI_SPI_REG_BASE 0xe800 #define NMI_SPI_CTL (NMI_SPI_REG_BASE) #define NMI_SPI_MASTER_DMA_ADDR (NMI_SPI_REG_BASE+0x4) #define NMI_SPI_MASTER_DMA_COUNT (NMI_SPI_REG_BASE+0x8) #define NMI_SPI_SLAVE_DMA_ADDR (NMI_SPI_REG_BASE+0xc) #define NMI_SPI_SLAVE_DMA_COUNT (NMI_SPI_REG_BASE+0x10) #define NMI_SPI_TX_MODE (NMI_SPI_REG_BASE+0x20) #define NMI_SPI_PROTOCOL_CONFIG (NMI_SPI_REG_BASE+0x24) #define NMI_SPI_INTR_CTL (NMI_SPI_REG_BASE+0x2c) #define NMI_SPI_MISC_CTRL (NMI_SPI_REG_BASE+0x48) #define NMI_SPI_PROTOCOL_OFFSET (NMI_SPI_PROTOCOL_CONFIG-NMI_SPI_REG_BASE) #define SPI_BASE NMI_SPI_REG_BASE #define CMD_DMA_WRITE 0xc1 #define CMD_DMA_READ 0xc2 #define CMD_INTERNAL_WRITE 0xc3 #define CMD_INTERNAL_READ 0xc4 #define CMD_TERMINATE 0xc5 #define CMD_REPEAT 0xc6 #define CMD_DMA_EXT_WRITE 0xc7 #define CMD_DMA_EXT_READ 0xc8 #define CMD_SINGLE_WRITE 0xc9 #define CMD_SINGLE_READ 0xca #define CMD_RESET 0xcf #define N_OK 0 #define N_FAIL -1 #define N_RESET -2 #define N_RETRY -3 #define SPI_RESP_RETRY_COUNT (10) #define SPI_RETRY_COUNT (10) #define DATA_PKT_SZ_256 256 #define DATA_PKT_SZ_512 512 #define DATA_PKT_SZ_1K 1024 #define DATA_PKT_SZ_4K (4 * 1024) #define DATA_PKT_SZ_8K (8 * 1024) #define DATA_PKT_SZ DATA_PKT_SZ_8K static uint8 gu8Crc_off = 0; static inline sint8 nmi_spi_read(uint8 *b, uint16 sz) { return nm_spi_rw(NULL, b, sz); } static inline sint8 nmi_spi_write(uint8 *b, uint16 sz) { return nm_spi_rw(b, NULL, sz); } static sint8 nmi_spi_writeread(uint8 *bw, uint8 *br, uint16 sz) { return nm_spi_rw(bw, br, sz); } /******************************************** Crc7 ********************************************/ static const uint8 crc7_syndrome_table[256] = { 0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f, 0x48, 0x41, 0x5a, 0x53, 0x6c, 0x65, 0x7e, 0x77, 0x19, 0x10, 0x0b, 0x02, 0x3d, 0x34, 0x2f, 0x26, 0x51, 0x58, 0x43, 0x4a, 0x75, 0x7c, 0x67, 0x6e, 0x32, 0x3b, 0x20, 0x29, 0x16, 0x1f, 0x04, 0x0d, 0x7a, 0x73, 0x68, 0x61, 0x5e, 0x57, 0x4c, 0x45, 0x2b, 0x22, 0x39, 0x30, 0x0f, 0x06, 0x1d, 0x14, 0x63, 0x6a, 0x71, 0x78, 0x47, 0x4e, 0x55, 0x5c, 0x64, 0x6d, 0x76, 0x7f, 0x40, 0x49, 0x52, 0x5b, 0x2c, 0x25, 0x3e, 0x37, 0x08, 0x01, 0x1a, 0x13, 0x7d, 0x74, 0x6f, 0x66, 0x59, 0x50, 0x4b, 0x42, 0x35, 0x3c, 0x27, 0x2e, 0x11, 0x18, 0x03, 0x0a, 0x56, 0x5f, 0x44, 0x4d, 0x72, 0x7b, 0x60, 0x69, 0x1e, 0x17, 0x0c, 0x05, 0x3a, 0x33, 0x28, 0x21, 0x4f, 0x46, 0x5d, 0x54, 0x6b, 0x62, 0x79, 0x70, 0x07, 0x0e, 0x15, 0x1c, 0x23, 0x2a, 0x31, 0x38, 0x41, 0x48, 0x53, 0x5a, 0x65, 0x6c, 0x77, 0x7e, 0x09, 0x00, 0x1b, 0x12, 0x2d, 0x24, 0x3f, 0x36, 0x58, 0x51, 0x4a, 0x43, 0x7c, 0x75, 0x6e, 0x67, 0x10, 0x19, 0x02, 0x0b, 0x34, 0x3d, 0x26, 0x2f, 0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 0x45, 0x4c, 0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04, 0x6a, 0x63, 0x78, 0x71, 0x4e, 0x47, 0x5c, 0x55, 0x22, 0x2b, 0x30, 0x39, 0x06, 0x0f, 0x14, 0x1d, 0x25, 0x2c, 0x37, 0x3e, 0x01, 0x08, 0x13, 0x1a, 0x6d, 0x64, 0x7f, 0x76, 0x49, 0x40, 0x5b, 0x52, 0x3c, 0x35, 0x2e, 0x27, 0x18, 0x11, 0x0a, 0x03, 0x74, 0x7d, 0x66, 0x6f, 0x50, 0x59, 0x42, 0x4b, 0x17, 0x1e, 0x05, 0x0c, 0x33, 0x3a, 0x21, 0x28, 0x5f, 0x56, 0x4d, 0x44, 0x7b, 0x72, 0x69, 0x60, 0x0e, 0x07, 0x1c, 0x15, 0x2a, 0x23, 0x38, 0x31, 0x46, 0x4f, 0x54, 0x5d, 0x62, 0x6b, 0x70, 0x79 }; static inline uint8 crc7_byte(uint8 crc, uint8 data) { return crc7_syndrome_table[(crc << 1) ^ data]; } static inline uint8 crc7(uint8 crc, const uint8 *buffer, uint32 len) { while (len--) crc = crc7_byte(crc, *buffer++); return crc; } /******************************************** Spi protocol Function ********************************************/ static sint8 spi_cmd(uint8 cmd, uint32 adr, uint32 u32data, uint32 sz,uint8 clockless) { uint8 bc[9]; uint8 len = 5; sint8 result = N_OK; bc[0] = cmd; switch (cmd) { case CMD_SINGLE_READ: /* single word (4 bytes) read */ bc[1] = (uint8)(adr >> 16); bc[2] = (uint8)(adr >> 8); bc[3] = (uint8)adr; len = 5; break; case CMD_INTERNAL_READ: /* internal register read */ bc[1] = (uint8)(adr >> 8); if(clockless) bc[1] |= (1 << 7); bc[2] = (uint8)adr; bc[3] = 0x00; len = 5; break; #if defined(CMD_TERMINATE) case CMD_TERMINATE: /* termination */ bc[1] = 0x00; bc[2] = 0x00; bc[3] = 0x00; len = 5; break; #endif #if defined(CMD_REPEAT) case CMD_REPEAT: /* repeat */ bc[1] = 0x00; bc[2] = 0x00; bc[3] = 0x00; len = 5; break; #endif case CMD_RESET: /* reset */ bc[1] = 0xff; bc[2] = 0xff; bc[3] = 0xff; len = 5; break; #if defined(CMD_DMA_WRITE) || defined(CMD_DMA_READ) case CMD_DMA_WRITE: /* dma write */ case CMD_DMA_READ: /* dma read */ bc[1] = (uint8)(adr >> 16); bc[2] = (uint8)(adr >> 8); bc[3] = (uint8)adr; bc[4] = (uint8)(sz >> 8); bc[5] = (uint8)(sz); len = 7; break; #endif case CMD_DMA_EXT_WRITE: /* dma extended write */ case CMD_DMA_EXT_READ: /* dma extended read */ bc[1] = (uint8)(adr >> 16); bc[2] = (uint8)(adr >> 8); bc[3] = (uint8)adr; bc[4] = (uint8)(sz >> 16); bc[5] = (uint8)(sz >> 8); bc[6] = (uint8)(sz); len = 8; break; case CMD_INTERNAL_WRITE: /* internal register write */ bc[1] = (uint8)(adr >> 8); if(clockless) bc[1] |= (1 << 7); bc[2] = (uint8)(adr); bc[3] = (uint8)(u32data >> 24); bc[4] = (uint8)(u32data >> 16); bc[5] = (uint8)(u32data >> 8); bc[6] = (uint8)(u32data); len = 8; break; case CMD_SINGLE_WRITE: /* single word write */ bc[1] = (uint8)(adr >> 16); bc[2] = (uint8)(adr >> 8); bc[3] = (uint8)(adr); bc[4] = (uint8)(u32data >> 24); bc[5] = (uint8)(u32data >> 16); bc[6] = (uint8)(u32data >> 8); bc[7] = (uint8)(u32data); len = 9; break; default: result = N_FAIL; break; } if(result == N_OK) { if (!gu8Crc_off) bc[len-1] = (crc7(0x7f, (const uint8 *)&bc[0], len-1)) << 1; else len-=1; if (M2M_SUCCESS != nmi_spi_write(bc, len)) { M2M_ERR("[nmi spi]: Failed cmd write, bus error...\n"); result = N_FAIL; } } return result; } static sint8 spi_data_rsp(uint8 cmd) { uint8 len; uint8 rsp[3]; sint8 result = N_OK; if (!gu8Crc_off) len = 2; else len = 3; if (M2M_SUCCESS != nmi_spi_read(&rsp[0], len)) { M2M_ERR("[nmi spi]: Failed bus error...\n"); result = N_FAIL; goto _fail_; } if((rsp[len-1] != 0)||(rsp[len-2] != 0xC3)) { M2M_ERR("[nmi spi]: Failed data response read, %x %x %x\n",rsp[0],rsp[1],rsp[2]); result = N_FAIL; goto _fail_; } _fail_: return result; } static sint8 spi_cmd_rsp(uint8 cmd) { uint8 rsp; sint8 result = N_OK; sint8 s8RetryCnt; /** Command/Control response **/ #if defined(CMD_TERMINATE) if(cmd == CMD_TERMINATE) { if(M2M_SUCCESS != nmi_spi_read(&rsp, 1)) { result = N_FAIL; goto _fail_; } } #endif #if defined(CMD_REPEAT) if(cmd == CMD_REPEAT) { if (M2M_SUCCESS != nmi_spi_read(&rsp, 1)) { result = N_FAIL; goto _fail_; } } #endif /* wait for response */ s8RetryCnt = SPI_RESP_RETRY_COUNT; do { if (M2M_SUCCESS != nmi_spi_read(&rsp, 1)) { M2M_ERR("[nmi spi]: Failed cmd response read, bus error...\n"); result = N_FAIL; goto _fail_; } } while((rsp != cmd) && (s8RetryCnt-- >0)); /** State response **/ /* wait for response */ s8RetryCnt = SPI_RESP_RETRY_COUNT; do { if (M2M_SUCCESS != nmi_spi_read(&rsp, 1)) { M2M_ERR("[nmi spi]: Failed cmd response read, bus error...\n"); result = N_FAIL; goto _fail_; } } while((rsp != 0x00) && (s8RetryCnt-- >0)); _fail_: return result; } sint8 nm_spi_reset(void) { //M2M_INFO("Reset Spi\n"); spi_cmd(CMD_RESET, 0, 0, 0, 0); if(spi_cmd_rsp(CMD_RESET) != N_OK) { // Reset command failed, need to send repeated 1's until reset occurs uint8 w_buf[8] = {0xFF}; uint8 r_buf[8]; M2M_ERR("[nmi spi]: Failed rst cmd response\n"); nmi_spi_writeread(w_buf, r_buf, 8); if(r_buf[7] != 0xFF) { M2M_ERR("[nmi spi]: Failed repeated reset\n"); return N_FAIL; } } return N_OK; } static sint8 spi_data_read(uint8 *b, uint16 sz,uint8 clockless) { sint16 retry, ix, nbytes; sint8 result = N_OK; uint8 crc[2]; uint8 rsp; /** Data **/ ix = 0; do { if (sz <= DATA_PKT_SZ) nbytes = sz; else nbytes = DATA_PKT_SZ; /** Data Response header **/ retry = SPI_RESP_RETRY_COUNT; do { if (M2M_SUCCESS != nmi_spi_read(&rsp, 1)) { M2M_ERR("[nmi spi]: Failed data response read, bus error...\n"); result = N_FAIL; break; } if((rsp & 0xf0) == 0xf0) break; } while (retry--); if (result == N_FAIL) break; if (retry <= 0) { M2M_ERR("[nmi spi]: Failed data response read...(%02x)\n", rsp); result = N_FAIL; break; } /** Read bytes **/ if (M2M_SUCCESS != nmi_spi_read(&b[ix], nbytes)) { M2M_ERR("[nmi spi]: Failed data block read, bus error...\n"); result = N_FAIL; break; } if(!clockless) { /** Read Crc **/ if (!gu8Crc_off) { if (M2M_SUCCESS != nmi_spi_read(crc, 2)) { M2M_ERR("[nmi spi]: Failed data block crc read, bus error...\n"); result = N_FAIL; break; } } } ix += nbytes; sz -= nbytes; } while (sz); return result; } static sint8 spi_data_write(uint8 *b, uint16 sz) { sint16 ix = 0; uint16 nbytes; sint8 result = N_OK; uint8 cmd, order, crc[2] = {0}; //uint8 rsp; /** Data **/ do { if (sz <= DATA_PKT_SZ) nbytes = sz; else nbytes = DATA_PKT_SZ; /** Write command **/ cmd = 0xf0; if (ix == 0) { if (sz <= DATA_PKT_SZ) order = 0x3; else order = 0x1; } else { if (sz <= DATA_PKT_SZ) order = 0x3; else order = 0x2; } cmd |= order; if (M2M_SUCCESS != nmi_spi_write(&cmd, 1)) { M2M_ERR("[nmi spi]: Failed data block cmd write, bus error...\n"); result = N_FAIL; break; } /** Write data **/ if (M2M_SUCCESS != nmi_spi_write(&b[ix], nbytes)) { M2M_ERR("[nmi spi]: Failed data block write, bus error...\n"); result = N_FAIL; break; } /** Write Crc **/ if (!gu8Crc_off) { if (M2M_SUCCESS != nmi_spi_write(crc, 2)) { M2M_ERR("[nmi spi]: Failed data block crc write, bus error...\n"); result = N_FAIL; break; } } ix += nbytes; sz -= nbytes; } while (sz); return result; } /******************************************** Spi Internal Read/Write Function ********************************************/ /******************************************** Spi interfaces ********************************************/ /** * @fn nm_spi_write_reg * @brief Write register * @param[in] u32Addr * Register address * @param[in] u32Val * Value to be written to the register * @return @ref M2M_SUCCESS in case of success and @ref M2M_ERR_BUS_FAIL in case of failure */ sint8 nm_spi_write_reg(uint32 addr, uint32 u32data) { uint8 retry = SPI_RETRY_COUNT; sint8 result = N_OK; uint8 cmd = CMD_SINGLE_WRITE; uint8 clockless = 0; _RETRY_: if (addr <= 0x30) { /** NMC1000 clockless registers. **/ cmd = CMD_INTERNAL_WRITE; clockless = 1; } result = spi_cmd(cmd, addr, u32data, 4, clockless); if (result != N_OK) { M2M_ERR("[nmi spi]: Failed cmd, write reg (%08x)...\n", (unsigned int)addr); goto _FAIL_; } result = spi_cmd_rsp(cmd); if (result != N_OK) { M2M_ERR("[nmi spi]: Failed cmd response, write reg (%08x)...\n", (unsigned int)addr); goto _FAIL_; } _FAIL_: if(result != N_OK) { nm_bsp_sleep(1); spi_cmd(CMD_RESET, 0, 0, 0, 0); spi_cmd_rsp(CMD_RESET); M2M_ERR("Reset and retry %d %x %x\n", retry, (unsigned int)addr, (unsigned int)u32data); nm_bsp_sleep(1); retry--; if(retry) goto _RETRY_; } return result; } static sint8 nm_spi_write(uint32 addr, uint8 *buf, uint16 size) { sint8 result; uint8 retry = SPI_RETRY_COUNT; uint8 cmd = CMD_DMA_EXT_WRITE; _RETRY_: /** Command **/ //Workaround hardware problem with single byte transfers over SPI bus if (size == 1) size = 2; result = spi_cmd(cmd, addr, 0, size,0); if (result != N_OK) { M2M_ERR("[nmi spi]: Failed cmd, write block (%08x)...\n", (unsigned int)addr); goto _FAIL_; } result = spi_cmd_rsp(cmd); if (result != N_OK) { M2M_ERR("[nmi spi ]: Failed cmd response, write block (%08x)...\n", (unsigned int)addr); goto _FAIL_; } /** Data **/ result = spi_data_write(buf, size); if (result != N_OK) { M2M_ERR("[nmi spi]: Failed block data write...\n"); goto _FAIL_; } /** Data RESP **/ result = spi_data_rsp(cmd); if (result != N_OK) { M2M_ERR("[nmi spi]: Failed block data write...\n"); goto _FAIL_; } _FAIL_: if(result != N_OK) { nm_bsp_sleep(1); spi_cmd(CMD_RESET, 0, 0, 0, 0); spi_cmd_rsp(CMD_RESET); M2M_ERR("Reset and retry %d %x %d\n", retry, (unsigned int)addr, size); nm_bsp_sleep(1); retry--; if(retry) goto _RETRY_; } return result; } /** * @fn nm_spi_read_reg_with_ret * @brief Read register with error code return * @param[in] u32Addr * Register address * @param[out] pu32RetVal * Pointer to u32 variable used to return the read value * @return @ref M2M_SUCCESS in case of success and M2M_ERR_BUS_FAIL in case of failure */ sint8 nm_spi_read_reg_with_ret(uint32 addr, uint32 *u32data) { uint8 retry = SPI_RETRY_COUNT; volatile sint8 result = N_OK; uint8 cmd = CMD_SINGLE_READ; uint8 tmp[4]; uint8 clockless = 0; _RETRY_: if (addr <= 0xff) { /** NMC1000 clockless registers. **/ cmd = CMD_INTERNAL_READ; clockless = 1; } result = spi_cmd(cmd, addr, 0, 4, clockless); if (result != N_OK) { M2M_ERR("[nmi spi]: Failed cmd, read reg (%08x)...\n", (unsigned int)addr); goto _FAIL_; } result = spi_cmd_rsp(cmd); if (result != N_OK) { M2M_ERR("[nmi spi]: Failed cmd response, read reg (%08x)...\n", (unsigned int)addr); goto _FAIL_; } /* to avoid endianness issues */ result = spi_data_read(&tmp[0], 4, clockless); if (result != N_OK) { M2M_ERR("[nmi spi]: Failed data read...\n"); goto _FAIL_; } *u32data = tmp[0] | ((uint32)tmp[1] << 8) | ((uint32)tmp[2] << 16) | ((uint32)tmp[3] << 24); _FAIL_: if(result != N_OK) { nm_bsp_sleep(1); spi_cmd(CMD_RESET, 0, 0, 0, 0); spi_cmd_rsp(CMD_RESET); M2M_ERR("Reset and retry %d %lx\n",retry,addr); nm_bsp_sleep(1); retry--; if(retry) goto _RETRY_; } return result; } static sint8 nm_spi_read(uint32 addr, uint8 *buf, uint16 size) { uint8 cmd = CMD_DMA_EXT_READ; sint8 result; uint8 retry = SPI_RETRY_COUNT; uint8 tmp[2]; uint8 single_byte_workaround = 0; _RETRY_: /** Command **/ if (size == 1) { //Workaround hardware problem with single byte transfers over SPI bus size = 2; single_byte_workaround = 1; } result = spi_cmd(cmd, addr, 0, size,0); if (result != N_OK) { M2M_ERR("[nmi spi]: Failed cmd, read block (%08x)...\n", (unsigned int)addr); goto _FAIL_; } result = spi_cmd_rsp(cmd); if (result != N_OK) { M2M_ERR("[nmi spi]: Failed cmd response, read block (%08x)...\n", (unsigned int)addr); goto _FAIL_; } /** Data **/ if (single_byte_workaround) { result = spi_data_read(tmp, size,0); buf[0] = tmp[0]; } else result = spi_data_read(buf, size,0); if (result != N_OK) { M2M_ERR("[nmi spi]: Failed block data read...\n"); goto _FAIL_; } _FAIL_: if(result != N_OK) { nm_bsp_sleep(1); spi_cmd(CMD_RESET, 0, 0, 0, 0); spi_cmd_rsp(CMD_RESET); M2M_ERR("Reset and retry %d %lx %d\n",retry,addr,size); nm_bsp_sleep(1); retry--; if(retry) goto _RETRY_; } return result; } /******************************************** Bus interfaces ********************************************/ static void spi_init_pkt_sz(void) { uint32 val32; /* Make sure SPI max. packet size fits the defined DATA_PKT_SZ. */ val32 = nm_spi_read_reg(SPI_BASE+0x24); val32 &= ~(0x7 << 4); switch(DATA_PKT_SZ) { case 256: val32 |= (0 << 4); break; case 512: val32 |= (1 << 4); break; case 1024: val32 |= (2 << 4); break; case 2048: val32 |= (3 << 4); break; case 4096: val32 |= (4 << 4); break; case 8192: val32 |= (5 << 4); break; } nm_spi_write_reg(SPI_BASE+0x24, val32); } /** * @fn nm_spi_init * @brief Initialize the SPI * @return @ref M2M_SUCCESS in case of success and @ref M2M_ERR_BUS_FAIL in case of failure */ sint8 nm_spi_init(void) { uint32 chipid; uint32 reg = 0; /** configure protocol **/ gu8Crc_off = 0; if(nm_spi_read_reg_with_ret(NMI_SPI_PROTOCOL_CONFIG, ®) != M2M_SUCCESS) { /* Read failed. Try with CRC off. This might happen when module is removed but chip isn't reset*/ gu8Crc_off = 1; M2M_ERR("[nmi spi]: Failed internal read protocol with CRC on, retrying with CRC off...\n"); if(nm_spi_read_reg_with_ret(NMI_SPI_PROTOCOL_CONFIG, ®) != M2M_SUCCESS) { // Read failed with both CRC on and off, something went bad M2M_ERR( "[nmi spi]: Failed internal read protocol...\n"); return M2M_ERR_BUS_FAIL; } } if(gu8Crc_off == 0) { reg &= ~0xc; /* disable crc checking */ reg &= ~0x70; reg |= (0x5 << 4); if(nm_spi_write_reg(NMI_SPI_PROTOCOL_CONFIG, reg) != M2M_SUCCESS) { M2M_ERR( "[nmi spi]: Failed internal write protocol reg...\n"); return M2M_ERR_BUS_FAIL; } gu8Crc_off = 1; } /** make sure can read back chip id correctly **/ if(nm_spi_read_reg_with_ret(0x1000, &chipid) != M2M_SUCCESS) { M2M_ERR("[nmi spi]: Fail cmd read chip id...\n"); return M2M_ERR_BUS_FAIL; } M2M_DBG("[nmi spi]: chipid (%08x)\n", (unsigned int)chipid); spi_init_pkt_sz(); return M2M_SUCCESS; } /** * @fn nm_spi_init * @brief DeInitialize the SPI * @return @ref M2M_SUCCESS in case of success and @ref M2M_ERR_BUS_FAIL in case of failure */ sint8 nm_spi_deinit(void) { gu8Crc_off = 0; return M2M_SUCCESS; } /* * @fn nm_spi_read_reg * @brief Read register * @param [in] u32Addr * Register address * @return Register value */ uint32 nm_spi_read_reg(uint32 u32Addr) { uint32 u32Val; nm_spi_read_reg_with_ret(u32Addr, &u32Val); return u32Val; } /* * @fn nm_spi_read_block * @brief Read block of data * @param [in] u32Addr * Start address * @param [out] puBuf * Pointer to a buffer used to return the read data * @param [in] u16Sz * Number of bytes to read. The buffer size must be >= u16Sz * @return M2M_SUCCESS in case of success and M2M_ERR_BUS_FAIL in case of failure * @author M. Abdelmawla * @date 11 July 2012 * @version 1.0 */ sint8 nm_spi_read_block(uint32 u32Addr, uint8 *puBuf, uint16 u16Sz) { sint8 s8Ret; s8Ret = nm_spi_read(u32Addr, puBuf, u16Sz); if(N_OK == s8Ret) s8Ret = M2M_SUCCESS; else s8Ret = M2M_ERR_BUS_FAIL; return s8Ret; } /* * @fn nm_spi_write_block * @brief Write block of data * @param [in] u32Addr * Start address * @param [in] puBuf * Pointer to the buffer holding the data to be written * @param [in] u16Sz * Number of bytes to write. The buffer size must be >= u16Sz * @return M2M_SUCCESS in case of success and M2M_ERR_BUS_FAIL in case of failure * @author M. Abdelmawla * @date 11 July 2012 * @version 1.0 */ sint8 nm_spi_write_block(uint32 u32Addr, uint8 *puBuf, uint16 u16Sz) { sint8 s8Ret; s8Ret = nm_spi_write(u32Addr, puBuf, u16Sz); if(N_OK == s8Ret) s8Ret = M2M_SUCCESS; else s8Ret = M2M_ERR_BUS_FAIL; return s8Ret; } #endif