/** * @file speed_density.cpp * * See http://rusefi.com/wiki/index.php?title=Manual:Software:Fuel_Control#Speed_Density for details * * @date May 29, 2014 * @author Andrey Belomutskiy, (c) 2012-2020 */ #include "pch.h" #include "speed_density.h" #include "fuel_math.h" #if defined(HAS_OS_ACCESS) #error "Unexpected OS ACCESS HERE" #endif #define rpmMin 500 #define rpmMax 8000 fuel_Map3D_t veMap; lambda_Map3D_t lambdaMap; baroCorr_Map3D_t baroCorrMap; #define tpMin 0 #define tpMax 100 // http://rusefi.com/math/t_charge.html /***panel:Charge Temperature*/ temperature_t getTCharge(int rpm, float tps) { const auto clt = Sensor::get(SensorType::Clt); const auto iat = Sensor::get(SensorType::Iat); float airTemp = 0; // Without either valid, return 0C. It's wrong, but it'll pretend to be nice and dense, so at least you won't go lean. if (!iat && !clt) { return 0; } else if (!clt && iat) { // Intake temperature will almost always be colder (richer) than CLT - use that return airTemp; } else if (!iat && clt) { // Without valid intake temperature, assume intake temp is 0C, and interpolate anyway airTemp = 0; } else { // All is well - use real air temp airTemp = iat.Value; } float coolantTemp = clt.Value; if ((engine->engineState.sd.isTChargeAirModel = (CONFIG(tChargeMode) == TCHARGE_MODE_AIR_INTERP))) { const floatms_t gramsPerMsToKgPerHour = (3600.0f * 1000.0f) / 1000.0f; // We're actually using an 'old' airMass calculated for the previous cycle, but it's ok, we're not having any self-excitaton issues floatms_t airMassForEngine = engine->engineState.sd.airMassInOneCylinder * CONFIG(specs.cylindersCount); // airMass is in grams per 1 cycle for 1 cyl. Convert it to airFlow in kg/h for the engine. // And if the engine is stopped (0 rpm), then airFlow is also zero (avoiding NaN division) floatms_t airFlow = (rpm == 0) ? 0 : airMassForEngine * gramsPerMsToKgPerHour / getEngineCycleDuration(rpm); // just interpolate between user-specified min and max coefs, based on the max airFlow value engine->engineState.airFlow = airFlow; engine->engineState.sd.Tcharge_coff = interpolateClamped(0.0, CONFIG(tChargeAirCoefMin), CONFIG(tChargeAirFlowMax), CONFIG(tChargeAirCoefMax), airFlow); // save it for console output (instead of MAF massAirFlow) } else { float minRpmKcurrentTPS = interpolateMsg("minRpm", tpMin, CONFIG(tChargeMinRpmMinTps), tpMax, CONFIG(tChargeMinRpmMaxTps), tps); float maxRpmKcurrentTPS = interpolateMsg("maxRpm", tpMin, CONFIG(tChargeMaxRpmMinTps), tpMax, CONFIG(tChargeMaxRpmMaxTps), tps); engine->engineState.sd.Tcharge_coff = interpolateMsg("Kcurr", rpmMin, minRpmKcurrentTPS, rpmMax, maxRpmKcurrentTPS, rpm); } if (cisnan(engine->engineState.sd.Tcharge_coff)) { warning(CUSTOM_ERR_T2_CHARGE, "t2-getTCharge NaN"); return coolantTemp; } // We use a robust interp. function for proper tcharge_coff clamping. float Tcharge = interpolateClamped(0.0f, coolantTemp, 1.0f, airTemp, engine->engineState.sd.Tcharge_coff); if (cisnan(Tcharge)) { // we can probably end up here while resetting engine state - interpolation would fail warning(CUSTOM_ERR_TCHARGE_NOT_READY, "getTCharge NaN"); return coolantTemp; } return Tcharge; } void initSpeedDensity() { veMap.init(config->veTable, config->veLoadBins, config->veRpmBins); // ve2Map.init(engineConfiguration->ve2Table, engineConfiguration->ve2LoadBins, engineConfiguration->ve2RpmBins); lambdaMap.init(config->lambdaTable, config->lambdaLoadBins, config->lambdaRpmBins); baroCorrMap.init(engineConfiguration->baroCorrTable, engineConfiguration->baroCorrPressureBins, engineConfiguration->baroCorrRpmBins); }