mirror of https://github.com/FOME-Tech/fome-fw.git
403 lines
14 KiB
C++
403 lines
14 KiB
C++
/**
|
|
* @file idle_thread.cpp
|
|
* @brief Idle Air Control valve thread.
|
|
*
|
|
* This thread looks at current RPM and decides if it should increase or decrease IAC duty cycle.
|
|
* This file has the hardware & scheduling logic, desired idle level lives separately.
|
|
*
|
|
*
|
|
* @date May 23, 2013
|
|
* @author Andrey Belomutskiy, (c) 2012-2022
|
|
*/
|
|
|
|
#include "pch.h"
|
|
|
|
#if EFI_IDLE_CONTROL
|
|
#include "idle_thread.h"
|
|
#include "idle_hardware.h"
|
|
|
|
#include "dc_motors.h"
|
|
|
|
#if EFI_TUNER_STUDIO
|
|
#include "stepper.h"
|
|
#endif
|
|
|
|
IIdleController::TargetInfo IdleController::getTargetRpm(float clt) {
|
|
// Base target RPM from CLT table
|
|
targetRpmByClt = interpolate2d(clt, config->cltIdleRpmBins, config->cltIdleRpm);
|
|
|
|
// idle air Bump for AC
|
|
// Why do we bump based on button not based on actual A/C relay state?
|
|
// Because AC output has a delay to allow idle bump to happen first, so that the airflow increase gets a head start on the load increase
|
|
// alternator duty cycle has a similar logic
|
|
targetRpmAcBump = engine->module<AcController>().unmock().acButtonState ? engineConfiguration->acIdleRpmBump : 0;
|
|
|
|
auto target = targetRpmByClt + targetRpmAcBump + luaAddRpm;
|
|
|
|
float rpmUpperLimit = engineConfiguration->idlePidRpmUpperLimit;
|
|
float entryRpm = target + rpmUpperLimit;
|
|
|
|
// Higher exit than entry to add some hysteresis to avoid bouncing around upper threshold
|
|
float exitRpm = target + 1.5 * rpmUpperLimit;
|
|
|
|
if (engineConfiguration->idleReturnTargetRamp) {
|
|
// Ramp the target down from the transition RPM to normal over a few seconds
|
|
float timeSinceIdleEntry = m_timeInIdlePhase.getElapsedSeconds();
|
|
target += interpolateClamped(
|
|
0, rpmUpperLimit,
|
|
3, 0,
|
|
timeSinceIdleEntry
|
|
);
|
|
}
|
|
|
|
idleTarget = target;
|
|
return { target, entryRpm, exitRpm };
|
|
}
|
|
|
|
IIdleController::Phase IdleController::determinePhase(float rpm, IIdleController::TargetInfo targetRpm, SensorResult tps, float vss, float crankingTaperFraction) {
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
if (!engine->rpmCalculator.isRunning()) {
|
|
return Phase::Cranking;
|
|
}
|
|
|
|
if (!tps) {
|
|
// If the TPS has failed, assume the engine is running
|
|
return Phase::Running;
|
|
}
|
|
|
|
// if throttle pressed, we're out of the idle corner
|
|
if (tps.Value > engineConfiguration->idlePidDeactivationTpsThreshold) {
|
|
return Phase::Running;
|
|
}
|
|
|
|
// If rpm too high (but throttle not pressed), we're coasting
|
|
// ALSO, if still in the cranking taper, disable coasting
|
|
if (rpm > targetRpm.IdleExitRpm) {
|
|
looksLikeCoasting = true;
|
|
} else if (rpm < targetRpm.IdleEntryRpm) {
|
|
looksLikeCoasting = false;
|
|
}
|
|
|
|
looksLikeCrankToIdle = crankingTaperFraction < 1;
|
|
if (looksLikeCoasting && !looksLikeCrankToIdle) {
|
|
return Phase::Coasting;
|
|
}
|
|
|
|
// If the vehicle is moving too quickly, disable CL idle
|
|
auto maxVss = engineConfiguration->maxIdleVss;
|
|
looksLikeRunning = maxVss != 0 && vss > maxVss;
|
|
if (looksLikeRunning) {
|
|
return Phase::Running;
|
|
}
|
|
|
|
// If still in the cranking taper, disable closed loop idle
|
|
if (looksLikeCrankToIdle) {
|
|
return Phase::CrankToIdleTaper;
|
|
}
|
|
#endif // EFI_SHAFT_POSITION_INPUT
|
|
|
|
// No other conditions met, we are idling!
|
|
return Phase::Idling;
|
|
}
|
|
|
|
float IdleController::getCrankingTaperFraction(float clt) const {
|
|
float taperDuration = engineConfiguration->afterCrankingIACtaperDuration;
|
|
|
|
if (engineConfiguration->useCrankingIdleTaperTableSetting) {
|
|
taperDuration *= interpolate2d(clt, config->cltCrankingTaperCorrBins, config->cltCrankingTaperCorr);
|
|
}
|
|
|
|
return (float)engine->rpmCalculator.getRevolutionCounterSinceStart() / taperDuration;
|
|
}
|
|
|
|
float IdleController::getCrankingOpenLoop(float clt) const {
|
|
float mult =
|
|
engineConfiguration->overrideCrankingIacSetting
|
|
// Override to separate table
|
|
? interpolate2d(clt, config->cltCrankingCorrBins, config->cltCrankingCorr)
|
|
// Otherwise use plain running table
|
|
: interpolate2d(clt, config->cltIdleCorrBins, config->cltIdleCorr);
|
|
|
|
return engineConfiguration->crankingIACposition * mult;
|
|
}
|
|
|
|
percent_t IdleController::getRunningOpenLoop(float rpm, float clt, SensorResult tps) {
|
|
float running =
|
|
engineConfiguration->manIdlePosition // Base idle position (slider)
|
|
* interpolate2d(clt, config->cltIdleCorrBins, config->cltIdleCorr);
|
|
openLoopBase = running;
|
|
|
|
// Now we bump it by the AC/fan amount if necessary
|
|
openLoopAcBump = engine->module<AcController>().unmock().acButtonState ? engineConfiguration->acIdleExtraOffset : 0;
|
|
openLoopFanBump =
|
|
(enginePins.fanRelay.getLogicValue() ? engineConfiguration->fan1ExtraIdle : 0)
|
|
+ (enginePins.fanRelay2.getLogicValue() ? engineConfiguration->fan2ExtraIdle : 0);
|
|
|
|
running += openLoopAcBump;
|
|
running += openLoopFanBump;
|
|
running += luaAdd;
|
|
|
|
#if EFI_ANTILAG_SYSTEM
|
|
if (engine->antilagController.isAntilagCondition) {
|
|
running += engineConfiguration->ALSIdleAdd;
|
|
}
|
|
#endif /* EFI_ANTILAG_SYSTEM */
|
|
|
|
// Now bump it by the specified amount when the throttle is opened (if configured)
|
|
// nb: invalid tps will make no change, no explicit check required
|
|
iacByTpsTaper = interpolateClamped(
|
|
0, 0,
|
|
engineConfiguration->idlePidDeactivationTpsThreshold, engineConfiguration->iacByTpsTaper,
|
|
tps.value_or(0));
|
|
|
|
running += iacByTpsTaper;
|
|
|
|
float airTaperRpmUpperLimit = engineConfiguration->idlePidRpmUpperLimit + engineConfiguration->airTaperRpmRange;
|
|
iacByRpmTaper = interpolateClamped(
|
|
engineConfiguration->idlePidRpmUpperLimit, 0,
|
|
airTaperRpmUpperLimit, engineConfiguration->airByRpmTaper,
|
|
rpm);
|
|
|
|
running += iacByRpmTaper;
|
|
|
|
return clampF(0, running, 100);
|
|
}
|
|
|
|
percent_t IdleController::getOpenLoop(Phase phase, float rpm, float clt, SensorResult tps, float crankingTaperFraction) {
|
|
percent_t crankingValvePosition = getCrankingOpenLoop(clt);
|
|
|
|
isCranking = phase == Phase::Cranking;
|
|
isIdleCoasting = phase == Phase::Coasting || (phase == Phase::Running && engineConfiguration->modeledFlowIdle);
|
|
|
|
// if we're cranking, nothing more to do.
|
|
if (isCranking) {
|
|
return crankingValvePosition;
|
|
}
|
|
|
|
// If coasting (and enabled), use the coasting position table instead of normal open loop
|
|
isIacTableForCoasting = engineConfiguration->useIacTableForCoasting && isIdleCoasting;
|
|
if (isIacTableForCoasting) {
|
|
return interpolate2d(rpm, config->iacCoastingRpmBins, config->iacCoasting);
|
|
}
|
|
|
|
percent_t running = getRunningOpenLoop(rpm, clt, tps);
|
|
|
|
// Interpolate between cranking and running over a short time
|
|
// This clamps once you fall off the end, so no explicit check for >1 required
|
|
return interpolateClamped(0, crankingValvePosition, 1, running, crankingTaperFraction);
|
|
}
|
|
|
|
float IdleController::getIdleTimingAdjustment(float rpm) {
|
|
return getIdleTimingAdjustment(rpm, m_lastTargetRpm, m_lastPhase);
|
|
}
|
|
|
|
float IdleController::getIdleTimingAdjustment(float rpm, float targetRpm, Phase phase) {
|
|
// if not enabled, do nothing
|
|
if (!engineConfiguration->useIdleTimingPidControl) {
|
|
return 0;
|
|
}
|
|
|
|
// If not idling, do nothing
|
|
if (phase != Phase::Idling) {
|
|
m_timingPid.reset();
|
|
return 0;
|
|
}
|
|
|
|
if (engineConfiguration->modeledFlowIdle) {
|
|
return m_modeledFlowIdleTiming;
|
|
} else {
|
|
// We're now in the idle mode, and RPM is inside the Timing-PID regulator work zone!
|
|
return m_timingPid.getOutput(targetRpm, rpm, FAST_CALLBACK_PERIOD_MS / 1000.0f);
|
|
}
|
|
}
|
|
|
|
static void finishIdleTestIfNeeded() {
|
|
if (engine->timeToStopIdleTest != 0 && getTimeNowUs() > engine->timeToStopIdleTest)
|
|
engine->timeToStopIdleTest = 0;
|
|
}
|
|
|
|
/**
|
|
* @return idle valve position percentage for automatic closed loop mode
|
|
*/
|
|
float IdleController::getClosedLoop(IIdleController::Phase phase, float tpsPos, float rpm, float targetRpm) {
|
|
if (shouldResetPid) {
|
|
needReset = m_pid.getIntegration() <= 0 || mustResetPid;
|
|
// we reset only if I-term is negative, because the positive I-term is good - it keeps RPM from dropping too low
|
|
if (needReset) {
|
|
m_pid.reset();
|
|
mustResetPid = false;
|
|
}
|
|
shouldResetPid = false;
|
|
}
|
|
|
|
notIdling = phase != IIdleController::Phase::Idling;
|
|
if (notIdling) {
|
|
// Don't store old I and D terms if PID doesn't work anymore.
|
|
// Otherwise they will affect the idle position much later, when the throttle is closed.
|
|
if (mightResetPid) {
|
|
mightResetPid = false;
|
|
shouldResetPid = true;
|
|
}
|
|
|
|
// We aren't idling, so don't apply any correction. A positive correction could inhibit a return to idle.
|
|
m_lastAutomaticPosition = 0;
|
|
return 0;
|
|
}
|
|
|
|
// #1553 we need to give FSIO variable offset or minValue a chance
|
|
bool acToggleJustTouched = engine->module<AcController>().unmock().timeSinceStateChange.getElapsedSeconds() < 0.5f /*second*/;
|
|
// check if within the dead zone
|
|
isInDeadZone = !acToggleJustTouched && std::abs(rpm - targetRpm) <= engineConfiguration->idlePidRpmDeadZone;
|
|
if (isInDeadZone) {
|
|
// current RPM is close enough, no need to change anything
|
|
return m_lastAutomaticPosition;
|
|
}
|
|
|
|
percent_t newValue = m_pid.getOutput(targetRpm, rpm, FAST_CALLBACK_PERIOD_MS / 1000.0f);
|
|
|
|
// the state of PID has been changed, so we might reset it now, but only when needed (see idlePidDeactivationTpsThreshold)
|
|
mightResetPid = true;
|
|
|
|
// Apply PID Deactivation Threshold as a smooth taper for TPS transients.
|
|
// if tps==0 then PID just works as usual, or we completely disable it if tps>=threshold
|
|
// TODO: should we just remove this? It reduces the gain if your zero throttle stop isn't perfect,
|
|
// which could give unstable results.
|
|
newValue = interpolateClamped(0, newValue, engineConfiguration->idlePidDeactivationTpsThreshold, 0, tpsPos);
|
|
|
|
m_lastAutomaticPosition = newValue;
|
|
return newValue;
|
|
}
|
|
|
|
float IdleController::getIdlePosition(float rpm) {
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
// Simplify hardware CI: we borrow the idle valve controller as a PWM source for various stimulation tasks
|
|
// The logic in this function is solidly unit tested, so it's not necessary to re-test the particulars on real hardware.
|
|
#ifdef HARDWARE_CI
|
|
return engineConfiguration->manIdlePosition;
|
|
#endif
|
|
|
|
bool useModeledFlow = engineConfiguration->modeledFlowIdle;
|
|
|
|
/*
|
|
* Here we have idle logic thread - actual stepper movement is implemented in a separate
|
|
* working thread see stepper.cpp
|
|
*/
|
|
m_pid.iTermMin = engineConfiguration->idlerpmpid_iTermMin;
|
|
m_pid.iTermMax = engineConfiguration->idlerpmpid_iTermMax;
|
|
|
|
// On failed sensor, use 0 deg C - should give a safe highish idle
|
|
float clt = Sensor::getOrZero(SensorType::Clt);
|
|
auto tps = Sensor::get(SensorType::DriverThrottleIntent);
|
|
|
|
// Compute the target we're shooting for
|
|
auto targetRpm = getTargetRpm(clt);
|
|
m_lastTargetRpm = targetRpm.ClosedLoopTarget;
|
|
|
|
// Determine cranking taper (modeled flow does no taper of open loop)
|
|
float crankingTaper = useModeledFlow ? 1 : getCrankingTaperFraction(clt);
|
|
|
|
// Determine what operation phase we're in - idling or not
|
|
float vehicleSpeed = Sensor::getOrZero(SensorType::VehicleSpeed);
|
|
auto phase = determinePhase(rpm, targetRpm, tps, vehicleSpeed, crankingTaper);
|
|
|
|
if (phase != m_lastPhase && phase == Phase::Idling) {
|
|
// Just entered idle, reset timer
|
|
m_timeInIdlePhase.reset();
|
|
}
|
|
|
|
m_lastPhase = phase;
|
|
|
|
finishIdleTestIfNeeded();
|
|
|
|
// Always apply open loop correction
|
|
percent_t iacPosition = getOpenLoop(phase, rpm, clt, tps, crankingTaper);
|
|
openLoop = iacPosition;
|
|
|
|
// Force closed loop operation for modeled flow
|
|
auto idleMode = useModeledFlow ? IM_AUTO : engineConfiguration->idleMode;
|
|
|
|
// If TPS is working and automatic mode enabled, add any closed loop correction
|
|
if (tps.Valid && idleMode == IM_AUTO) {
|
|
if (useModeledFlow && phase != Phase::Idling) {
|
|
m_pid.reset();
|
|
}
|
|
|
|
auto closedLoop = getClosedLoop(phase, tps.Value, rpm, targetRpm.ClosedLoopTarget);
|
|
idleClosedLoop = closedLoop;
|
|
iacPosition += closedLoop;
|
|
} else {
|
|
idleClosedLoop = 0;
|
|
}
|
|
|
|
iacPosition = clampPercentValue(iacPosition);
|
|
|
|
#if EFI_TUNER_STUDIO && (EFI_PROD_CODE || EFI_SIMULATOR)
|
|
if (useModeledFlow || idleMode == IM_AUTO) {
|
|
// see also tsOutputChannels->idlePosition
|
|
m_pid.postState(engine->outputChannels.idleStatus);
|
|
}
|
|
|
|
extern StepperMotor iacMotor;
|
|
engine->outputChannels.idleStepperTargetPosition = iacMotor.getTargetPosition();
|
|
#endif /* EFI_TUNER_STUDIO */
|
|
|
|
if (useModeledFlow && phase != Phase::Cranking) {
|
|
float totalAirmass = 0.01 * iacPosition * engineConfiguration->idleMaximumAirmass;
|
|
idleTargetAirmass = totalAirmass;
|
|
|
|
bool shouldAdjustTiming = engineConfiguration->useIdleTimingPidControl && phase == Phase::Idling;
|
|
|
|
// extract hiqh frequency content to be handled by timing
|
|
float timingAirmass = shouldAdjustTiming ? m_timingHpf.filter(totalAirmass) : 0;
|
|
|
|
// Convert from airmass delta -> timing
|
|
m_modeledFlowIdleTiming = interpolate2d(timingAirmass, config->airmassToTimingBins, config->airmassToTimingValues);
|
|
|
|
// Handle the residual low frequency content with airflow
|
|
float idleAirmass = totalAirmass - timingAirmass;
|
|
float airflowKgPerH = 3.6 * 0.001 * idleAirmass * rpm / 60 * engineConfiguration->cylindersCount / 2;
|
|
idleTargetFlow = airflowKgPerH;
|
|
|
|
// Convert from desired flow -> idle valve position
|
|
float idlePos = interpolate2d(
|
|
airflowKgPerH,
|
|
config->idleFlowEstimateFlow,
|
|
config->idleFlowEstimatePosition
|
|
);
|
|
|
|
iacPosition = idlePos;
|
|
}
|
|
|
|
currentIdlePosition = iacPosition;
|
|
isIdleClosedLoop = phase == Phase::Idling;
|
|
return iacPosition;
|
|
#else
|
|
return 0;
|
|
#endif // EFI_SHAFT_POSITION_INPUT
|
|
}
|
|
|
|
void IdleController::onFastCallback() {
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
float position = getIdlePosition(engine->triggerCentral.instantRpm.getInstantRpm());
|
|
applyIACposition(position);
|
|
#endif // EFI_SHAFT_POSITION_INPUT
|
|
}
|
|
|
|
void IdleController::onConfigurationChange(engine_configuration_s const * previousConfiguration) {
|
|
#if ! EFI_UNIT_TEST
|
|
shouldResetPid = !previousConfiguration || !m_pid.isSame(&previousConfiguration->idleRpmPid);
|
|
mustResetPid = shouldResetPid;
|
|
#endif
|
|
}
|
|
|
|
void IdleController::init() {
|
|
shouldResetPid = false;
|
|
mightResetPid = false;
|
|
m_pid.initPidClass(&engineConfiguration->idleRpmPid);
|
|
m_timingPid.initPidClass(&engineConfiguration->idleTimingPid);
|
|
|
|
m_timingHpf.configureHighpass(1000.0f / FAST_CALLBACK_PERIOD_MS, 1);
|
|
}
|
|
|
|
#endif /* EFI_IDLE_CONTROL */
|