fome-fw/firmware/controllers/actuators/idle_thread.cpp

403 lines
14 KiB
C++

/**
* @file idle_thread.cpp
* @brief Idle Air Control valve thread.
*
* This thread looks at current RPM and decides if it should increase or decrease IAC duty cycle.
* This file has the hardware & scheduling logic, desired idle level lives separately.
*
*
* @date May 23, 2013
* @author Andrey Belomutskiy, (c) 2012-2022
*/
#include "pch.h"
#if EFI_IDLE_CONTROL
#include "idle_thread.h"
#include "idle_hardware.h"
#include "dc_motors.h"
#if EFI_TUNER_STUDIO
#include "stepper.h"
#endif
IIdleController::TargetInfo IdleController::getTargetRpm(float clt) {
// Base target RPM from CLT table
targetRpmByClt = interpolate2d(clt, config->cltIdleRpmBins, config->cltIdleRpm);
// idle air Bump for AC
// Why do we bump based on button not based on actual A/C relay state?
// Because AC output has a delay to allow idle bump to happen first, so that the airflow increase gets a head start on the load increase
// alternator duty cycle has a similar logic
targetRpmAcBump = engine->module<AcController>().unmock().acButtonState ? engineConfiguration->acIdleRpmBump : 0;
auto target = targetRpmByClt + targetRpmAcBump + luaAddRpm;
float rpmUpperLimit = engineConfiguration->idlePidRpmUpperLimit;
float entryRpm = target + rpmUpperLimit;
// Higher exit than entry to add some hysteresis to avoid bouncing around upper threshold
float exitRpm = target + 1.5 * rpmUpperLimit;
if (engineConfiguration->idleReturnTargetRamp) {
// Ramp the target down from the transition RPM to normal over a few seconds
float timeSinceIdleEntry = m_timeInIdlePhase.getElapsedSeconds();
target += interpolateClamped(
0, rpmUpperLimit,
3, 0,
timeSinceIdleEntry
);
}
idleTarget = target;
return { target, entryRpm, exitRpm };
}
IIdleController::Phase IdleController::determinePhase(float rpm, IIdleController::TargetInfo targetRpm, SensorResult tps, float vss, float crankingTaperFraction) {
#if EFI_SHAFT_POSITION_INPUT
if (!engine->rpmCalculator.isRunning()) {
return Phase::Cranking;
}
if (!tps) {
// If the TPS has failed, assume the engine is running
return Phase::Running;
}
// if throttle pressed, we're out of the idle corner
if (tps.Value > engineConfiguration->idlePidDeactivationTpsThreshold) {
return Phase::Running;
}
// If rpm too high (but throttle not pressed), we're coasting
// ALSO, if still in the cranking taper, disable coasting
if (rpm > targetRpm.IdleExitRpm) {
looksLikeCoasting = true;
} else if (rpm < targetRpm.IdleEntryRpm) {
looksLikeCoasting = false;
}
looksLikeCrankToIdle = crankingTaperFraction < 1;
if (looksLikeCoasting && !looksLikeCrankToIdle) {
return Phase::Coasting;
}
// If the vehicle is moving too quickly, disable CL idle
auto maxVss = engineConfiguration->maxIdleVss;
looksLikeRunning = maxVss != 0 && vss > maxVss;
if (looksLikeRunning) {
return Phase::Running;
}
// If still in the cranking taper, disable closed loop idle
if (looksLikeCrankToIdle) {
return Phase::CrankToIdleTaper;
}
#endif // EFI_SHAFT_POSITION_INPUT
// No other conditions met, we are idling!
return Phase::Idling;
}
float IdleController::getCrankingTaperFraction(float clt) const {
float taperDuration = engineConfiguration->afterCrankingIACtaperDuration;
if (engineConfiguration->useCrankingIdleTaperTableSetting) {
taperDuration *= interpolate2d(clt, config->cltCrankingTaperCorrBins, config->cltCrankingTaperCorr);
}
return (float)engine->rpmCalculator.getRevolutionCounterSinceStart() / taperDuration;
}
float IdleController::getCrankingOpenLoop(float clt) const {
float mult =
engineConfiguration->overrideCrankingIacSetting
// Override to separate table
? interpolate2d(clt, config->cltCrankingCorrBins, config->cltCrankingCorr)
// Otherwise use plain running table
: interpolate2d(clt, config->cltIdleCorrBins, config->cltIdleCorr);
return engineConfiguration->crankingIACposition * mult;
}
percent_t IdleController::getRunningOpenLoop(float rpm, float clt, SensorResult tps) {
float running =
engineConfiguration->manIdlePosition // Base idle position (slider)
* interpolate2d(clt, config->cltIdleCorrBins, config->cltIdleCorr);
openLoopBase = running;
// Now we bump it by the AC/fan amount if necessary
openLoopAcBump = engine->module<AcController>().unmock().acButtonState ? engineConfiguration->acIdleExtraOffset : 0;
openLoopFanBump =
(enginePins.fanRelay.getLogicValue() ? engineConfiguration->fan1ExtraIdle : 0)
+ (enginePins.fanRelay2.getLogicValue() ? engineConfiguration->fan2ExtraIdle : 0);
running += openLoopAcBump;
running += openLoopFanBump;
running += luaAdd;
#if EFI_ANTILAG_SYSTEM
if (engine->antilagController.isAntilagCondition) {
running += engineConfiguration->ALSIdleAdd;
}
#endif /* EFI_ANTILAG_SYSTEM */
// Now bump it by the specified amount when the throttle is opened (if configured)
// nb: invalid tps will make no change, no explicit check required
iacByTpsTaper = interpolateClamped(
0, 0,
engineConfiguration->idlePidDeactivationTpsThreshold, engineConfiguration->iacByTpsTaper,
tps.value_or(0));
running += iacByTpsTaper;
float airTaperRpmUpperLimit = engineConfiguration->idlePidRpmUpperLimit + engineConfiguration->airTaperRpmRange;
iacByRpmTaper = interpolateClamped(
engineConfiguration->idlePidRpmUpperLimit, 0,
airTaperRpmUpperLimit, engineConfiguration->airByRpmTaper,
rpm);
running += iacByRpmTaper;
return clampF(0, running, 100);
}
percent_t IdleController::getOpenLoop(Phase phase, float rpm, float clt, SensorResult tps, float crankingTaperFraction) {
percent_t crankingValvePosition = getCrankingOpenLoop(clt);
isCranking = phase == Phase::Cranking;
isIdleCoasting = phase == Phase::Coasting || (phase == Phase::Running && engineConfiguration->modeledFlowIdle);
// if we're cranking, nothing more to do.
if (isCranking) {
return crankingValvePosition;
}
// If coasting (and enabled), use the coasting position table instead of normal open loop
isIacTableForCoasting = engineConfiguration->useIacTableForCoasting && isIdleCoasting;
if (isIacTableForCoasting) {
return interpolate2d(rpm, config->iacCoastingRpmBins, config->iacCoasting);
}
percent_t running = getRunningOpenLoop(rpm, clt, tps);
// Interpolate between cranking and running over a short time
// This clamps once you fall off the end, so no explicit check for >1 required
return interpolateClamped(0, crankingValvePosition, 1, running, crankingTaperFraction);
}
float IdleController::getIdleTimingAdjustment(float rpm) {
return getIdleTimingAdjustment(rpm, m_lastTargetRpm, m_lastPhase);
}
float IdleController::getIdleTimingAdjustment(float rpm, float targetRpm, Phase phase) {
// if not enabled, do nothing
if (!engineConfiguration->useIdleTimingPidControl) {
return 0;
}
// If not idling, do nothing
if (phase != Phase::Idling) {
m_timingPid.reset();
return 0;
}
if (engineConfiguration->modeledFlowIdle) {
return m_modeledFlowIdleTiming;
} else {
// We're now in the idle mode, and RPM is inside the Timing-PID regulator work zone!
return m_timingPid.getOutput(targetRpm, rpm, FAST_CALLBACK_PERIOD_MS / 1000.0f);
}
}
static void finishIdleTestIfNeeded() {
if (engine->timeToStopIdleTest != 0 && getTimeNowUs() > engine->timeToStopIdleTest)
engine->timeToStopIdleTest = 0;
}
/**
* @return idle valve position percentage for automatic closed loop mode
*/
float IdleController::getClosedLoop(IIdleController::Phase phase, float tpsPos, float rpm, float targetRpm) {
if (shouldResetPid) {
needReset = m_pid.getIntegration() <= 0 || mustResetPid;
// we reset only if I-term is negative, because the positive I-term is good - it keeps RPM from dropping too low
if (needReset) {
m_pid.reset();
mustResetPid = false;
}
shouldResetPid = false;
}
notIdling = phase != IIdleController::Phase::Idling;
if (notIdling) {
// Don't store old I and D terms if PID doesn't work anymore.
// Otherwise they will affect the idle position much later, when the throttle is closed.
if (mightResetPid) {
mightResetPid = false;
shouldResetPid = true;
}
// We aren't idling, so don't apply any correction. A positive correction could inhibit a return to idle.
m_lastAutomaticPosition = 0;
return 0;
}
// #1553 we need to give FSIO variable offset or minValue a chance
bool acToggleJustTouched = engine->module<AcController>().unmock().timeSinceStateChange.getElapsedSeconds() < 0.5f /*second*/;
// check if within the dead zone
isInDeadZone = !acToggleJustTouched && std::abs(rpm - targetRpm) <= engineConfiguration->idlePidRpmDeadZone;
if (isInDeadZone) {
// current RPM is close enough, no need to change anything
return m_lastAutomaticPosition;
}
percent_t newValue = m_pid.getOutput(targetRpm, rpm, FAST_CALLBACK_PERIOD_MS / 1000.0f);
// the state of PID has been changed, so we might reset it now, but only when needed (see idlePidDeactivationTpsThreshold)
mightResetPid = true;
// Apply PID Deactivation Threshold as a smooth taper for TPS transients.
// if tps==0 then PID just works as usual, or we completely disable it if tps>=threshold
// TODO: should we just remove this? It reduces the gain if your zero throttle stop isn't perfect,
// which could give unstable results.
newValue = interpolateClamped(0, newValue, engineConfiguration->idlePidDeactivationTpsThreshold, 0, tpsPos);
m_lastAutomaticPosition = newValue;
return newValue;
}
float IdleController::getIdlePosition(float rpm) {
#if EFI_SHAFT_POSITION_INPUT
// Simplify hardware CI: we borrow the idle valve controller as a PWM source for various stimulation tasks
// The logic in this function is solidly unit tested, so it's not necessary to re-test the particulars on real hardware.
#ifdef HARDWARE_CI
return engineConfiguration->manIdlePosition;
#endif
bool useModeledFlow = engineConfiguration->modeledFlowIdle;
/*
* Here we have idle logic thread - actual stepper movement is implemented in a separate
* working thread see stepper.cpp
*/
m_pid.iTermMin = engineConfiguration->idlerpmpid_iTermMin;
m_pid.iTermMax = engineConfiguration->idlerpmpid_iTermMax;
// On failed sensor, use 0 deg C - should give a safe highish idle
float clt = Sensor::getOrZero(SensorType::Clt);
auto tps = Sensor::get(SensorType::DriverThrottleIntent);
// Compute the target we're shooting for
auto targetRpm = getTargetRpm(clt);
m_lastTargetRpm = targetRpm.ClosedLoopTarget;
// Determine cranking taper (modeled flow does no taper of open loop)
float crankingTaper = useModeledFlow ? 1 : getCrankingTaperFraction(clt);
// Determine what operation phase we're in - idling or not
float vehicleSpeed = Sensor::getOrZero(SensorType::VehicleSpeed);
auto phase = determinePhase(rpm, targetRpm, tps, vehicleSpeed, crankingTaper);
if (phase != m_lastPhase && phase == Phase::Idling) {
// Just entered idle, reset timer
m_timeInIdlePhase.reset();
}
m_lastPhase = phase;
finishIdleTestIfNeeded();
// Always apply open loop correction
percent_t iacPosition = getOpenLoop(phase, rpm, clt, tps, crankingTaper);
openLoop = iacPosition;
// Force closed loop operation for modeled flow
auto idleMode = useModeledFlow ? IM_AUTO : engineConfiguration->idleMode;
// If TPS is working and automatic mode enabled, add any closed loop correction
if (tps.Valid && idleMode == IM_AUTO) {
if (useModeledFlow && phase != Phase::Idling) {
m_pid.reset();
}
auto closedLoop = getClosedLoop(phase, tps.Value, rpm, targetRpm.ClosedLoopTarget);
idleClosedLoop = closedLoop;
iacPosition += closedLoop;
} else {
idleClosedLoop = 0;
}
iacPosition = clampPercentValue(iacPosition);
#if EFI_TUNER_STUDIO && (EFI_PROD_CODE || EFI_SIMULATOR)
if (useModeledFlow || idleMode == IM_AUTO) {
// see also tsOutputChannels->idlePosition
m_pid.postState(engine->outputChannels.idleStatus);
}
extern StepperMotor iacMotor;
engine->outputChannels.idleStepperTargetPosition = iacMotor.getTargetPosition();
#endif /* EFI_TUNER_STUDIO */
if (useModeledFlow && phase != Phase::Cranking) {
float totalAirmass = 0.01 * iacPosition * engineConfiguration->idleMaximumAirmass;
idleTargetAirmass = totalAirmass;
bool shouldAdjustTiming = engineConfiguration->useIdleTimingPidControl && phase == Phase::Idling;
// extract hiqh frequency content to be handled by timing
float timingAirmass = shouldAdjustTiming ? m_timingHpf.filter(totalAirmass) : 0;
// Convert from airmass delta -> timing
m_modeledFlowIdleTiming = interpolate2d(timingAirmass, config->airmassToTimingBins, config->airmassToTimingValues);
// Handle the residual low frequency content with airflow
float idleAirmass = totalAirmass - timingAirmass;
float airflowKgPerH = 3.6 * 0.001 * idleAirmass * rpm / 60 * engineConfiguration->cylindersCount / 2;
idleTargetFlow = airflowKgPerH;
// Convert from desired flow -> idle valve position
float idlePos = interpolate2d(
airflowKgPerH,
config->idleFlowEstimateFlow,
config->idleFlowEstimatePosition
);
iacPosition = idlePos;
}
currentIdlePosition = iacPosition;
isIdleClosedLoop = phase == Phase::Idling;
return iacPosition;
#else
return 0;
#endif // EFI_SHAFT_POSITION_INPUT
}
void IdleController::onFastCallback() {
#if EFI_SHAFT_POSITION_INPUT
float position = getIdlePosition(engine->triggerCentral.instantRpm.getInstantRpm());
applyIACposition(position);
#endif // EFI_SHAFT_POSITION_INPUT
}
void IdleController::onConfigurationChange(engine_configuration_s const * previousConfiguration) {
#if ! EFI_UNIT_TEST
shouldResetPid = !previousConfiguration || !m_pid.isSame(&previousConfiguration->idleRpmPid);
mustResetPid = shouldResetPid;
#endif
}
void IdleController::init() {
shouldResetPid = false;
mightResetPid = false;
m_pid.initPidClass(&engineConfiguration->idleRpmPid);
m_timingPid.initPidClass(&engineConfiguration->idleTimingPid);
m_timingHpf.configureHighpass(1000.0f / FAST_CALLBACK_PERIOD_MS, 1);
}
#endif /* EFI_IDLE_CONTROL */