fome-fw/firmware/ext/atwinc1500/driver/source/nmuart.cpp

539 lines
12 KiB
C++
Executable File

/**
*
* \file
*
* \brief This module contains NMC1000 UART protocol bus APIs implementation.
*
* Copyright (c) 2016-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#include "common/include/nm_common.h"
#ifdef CONF_WINC_USE_UART
#include "driver/source/nmuart.h"
#include "bus_wrapper/include/nm_bus_wrapper.h"
#define HDR_SZ 12
static uint8 get_cs(uint8* b, uint8 sz){
int i;
uint8 cs = 0;
for(i = 0; i < sz; i++)
cs ^= b[i];
return cs;
}
/*
* @fn nm_uart_sync_cmd
* @brief Check COM Port
* @return M2M_SUCCESS in case of success and M2M_ERR_BUS_FAIL in case of failure
* @author Dina El Sissy
* @date 13 AUG 2012
* @version 1.0
*/
sint8 nm_uart_sync_cmd(void)
{
tstrNmUartDefault strUart;
sint8 s8Ret = -1;
uint8 b [HDR_SZ+1];
uint8 rsz;
uint8 retries = 1;
/*read reg*/
while (retries--)
{
b[0] = 0x12;
rsz = 1;
strUart.pu8Buf = b;
strUart.u16Sz = 1;
if (M2M_SUCCESS == nm_bus_ioctl(NM_BUS_IOCTL_W, &strUart))
{
strUart.u16Sz = rsz;
b[0] = 0;
// Pull all chars from buffer, we only care about the last
while (M2M_SUCCESS == nm_bus_ioctl(NM_BUS_IOCTL_R, &strUart))
{
strUart.u16Sz = rsz;
}
if (b[0] == 0x5a)
{
s8Ret = 1; // found on-chip (no bridge)
M2M_INFO("Built-in WINC1500 UART Found\n");
}
else if (b[0] == 0x5b)
{
s8Ret = 0; // found off-chip (std serial bridge)
M2M_INFO("WINC1500 Serial Bridge Found\n");
}
else if (b[0] == 0x5c)
{
s8Ret = 0; // found of-chip (at cmd app serial bridge)
M2M_INFO("WINC1500 Serial Bridge Found + AT CMD app Found\n");
}
else
{
continue;
}
break;
}
else
{
M2M_ERR("failed to send cfg bytes\n");
s8Ret = M2M_ERR_BUS_FAIL;
}
}
return s8Ret;
}
sint8 nm_uart_read_reg_with_ret(uint32 u32Addr, uint32* pu32RetVal)
{
tstrNmUartDefault strUart;
sint8 s8Ret = M2M_SUCCESS;
uint8 b [HDR_SZ+1];
uint8 rsz;
/*read reg*/
b[0] = 0xa5;
b[1] = 0;
b[2] = 0;
b[3] = 0;
b[4] = 0;
b[5] = (uint8)(u32Addr & 0x000000ff);
b[6] = (uint8)((u32Addr & 0x0000ff00)>>8);
b[7] = (uint8)((u32Addr & 0x00ff0000)>>16);
b[8] = (uint8)((u32Addr & 0xff000000)>>24);
b[9] = 0;
b[10] = 0;
b[11] = 0;
b[12] = 0;
b[2] = get_cs(&b[1],HDR_SZ);
rsz = 4;
strUart.pu8Buf = b;
strUart.u16Sz = sizeof(b);
if(M2M_SUCCESS == nm_bus_ioctl(NM_BUS_IOCTL_W, &strUart))
{
if(!nm_bus_get_chip_type())
{
strUart.u16Sz = 1;
if(M2M_SUCCESS != nm_bus_ioctl(NM_BUS_IOCTL_R, &strUart))
{
s8Ret = M2M_ERR_BUS_FAIL;
}
if(b[0] == 0xAC)
{
M2M_DBG("Successfully sent the command\n");
strUart.u16Sz = rsz;
if(M2M_SUCCESS != nm_bus_ioctl(NM_BUS_IOCTL_R, &strUart))
{
s8Ret = M2M_ERR_BUS_FAIL;
}
}
else
{
s8Ret = M2M_ERR_BUS_FAIL;
}
}
else
{
strUart.u16Sz = rsz;
if(M2M_SUCCESS != nm_bus_ioctl(NM_BUS_IOCTL_R, &strUart))
{
s8Ret = M2M_ERR_BUS_FAIL;
}
}
}
else
{
M2M_ERR("failed to send cfg bytes\n");
s8Ret = M2M_ERR_BUS_FAIL;
}
*pu32RetVal = ((uint32)b[0] << 24) | ((uint32)b[1] << 16) | ((uint32)b[2] << 8) | b[3];
return s8Ret;
}
/*
* @fn nm_uart_read_reg
* @brief Read register
* @param [in] u32Addr
* Register address
* @return Register value
* @author Dina El Sissy
* @date 13 AUG 2012
* @version 1.0
*/
uint32 nm_uart_read_reg(uint32 u32Addr)
{
uint32 val;
nm_uart_read_reg_with_ret(u32Addr , &val);
return val;
}
/*
* @fn nm_uart_write_reg
* @brief write register
* @param [in] u32Addr
* Register address
* @param [in] u32Val
* Value to be written to the register
* @return M2M_SUCCESS in case of success and M2M_ERR_BUS_FAIL in case of failure
* @author Dina El Sissy
* @date 13 AUG 2012
* @version 1.0
*/
sint8 nm_uart_write_reg(uint32 u32Addr, uint32 u32Val)
{
tstrNmUartDefault strUart;
sint8 s8Ret = M2M_SUCCESS;
uint8 b[HDR_SZ+1];
/*write reg*/
b[0] = 0xa5;
b[1] = 1;
b[2] = 0;
b[3] = 0;
b[4] = 0;
b[5] = (uint8)(u32Addr & 0x000000ff);
b[6] = (uint8)((u32Addr & 0x0000ff00)>>8);
b[7] = (uint8)((u32Addr & 0x00ff0000)>>16);
b[8] = (uint8)((u32Addr & 0xff000000)>>24);
b[9] = (uint8)(u32Val & 0x000000ff);
b[10] = (uint8)((u32Val & 0x0000ff00)>>8);
b[11] = (uint8)((u32Val & 0x00ff0000)>>16);
b[12] = (uint8)((u32Val & 0xff000000)>>24);
b[2] = get_cs(&b[1],HDR_SZ);
get_cs(&b[1],HDR_SZ);
strUart.pu8Buf = b;
strUart.u16Sz = sizeof(b);
if(M2M_SUCCESS != nm_bus_ioctl(NM_BUS_IOCTL_W, &strUart))
{
M2M_ERR("write error\n");
s8Ret = M2M_ERR_BUS_FAIL;
}
else
{
if(!nm_bus_get_chip_type())
{
//check for the ack from the SAMD21 for the packet reception.
strUart.u16Sz = 1;
if(M2M_SUCCESS != nm_bus_ioctl(NM_BUS_IOCTL_R, &strUart))
{
s8Ret = M2M_ERR_BUS_FAIL;
}
if(b[0] == 0xAC)
{
M2M_DBG("Successfully sent the reg write command\n");
}
else
{
M2M_ERR("write error\n");
s8Ret = M2M_ERR_BUS_FAIL;
}
}
}
return s8Ret;
}
/**
* @fn nm_uart_read_block
* @brief Read block of data
* @param [in] u32Addr
* Start address
* @param [out] puBuf
* Pointer to a buffer used to return the read data
* @param [in] u16Sz
* Number of bytes to read. The buffer size must be >= u16Sz
* @return M2M_SUCCESS in case of success and M2M_ERR_BUS_FAIL in case of failure
* @author Dina El Sissy
* @date 13 AUG 2012
* @version 1.0
*/
sint8 nm_uart_read_block(uint32 u32Addr, uint8 *pu8Buf, uint16 u16Sz)
{
tstrNmUartDefault strUart;
sint8 s8Ret = M2M_SUCCESS;
uint8 au8Buf[HDR_SZ+1];
au8Buf[0] = 0xa5;
au8Buf[1] = 2;
au8Buf[2] = 0;
au8Buf[3] = (uint8)(u16Sz & 0x00ff);
au8Buf[4] = (uint8)((u16Sz & 0xff00)>>8);
au8Buf[5] = (uint8)(u32Addr & 0x000000ff);
au8Buf[6] = (uint8)((u32Addr & 0x0000ff00)>>8);
au8Buf[7] = (uint8)((u32Addr & 0x00ff0000)>>16);
au8Buf[8] = (uint8)((u32Addr & 0xff000000)>>24);
au8Buf[9] = 0;
au8Buf[10] = 0;
au8Buf[11] = 0;
au8Buf[12] = 0;
au8Buf[2] = get_cs(&au8Buf[1],HDR_SZ);
strUart.pu8Buf = au8Buf;
strUart.u16Sz = sizeof(au8Buf);
if(M2M_SUCCESS != nm_bus_ioctl(NM_BUS_IOCTL_W, &strUart))
{
M2M_ERR("write error\n");
s8Ret = M2M_ERR_BUS_FAIL;
}
else
{
if(!nm_bus_get_chip_type())
{
//check for the ack from the SAMD21 for the packet reception.
strUart.u16Sz = 1;
if(M2M_SUCCESS != nm_bus_ioctl(NM_BUS_IOCTL_R, &strUart))
{
s8Ret = M2M_ERR_BUS_FAIL;
}
if(au8Buf[0] == 0xAC)
{
M2M_DBG("Successfully sent the block read command\n");
strUart.pu8Buf = pu8Buf;
strUart.u16Sz = u16Sz;
if(M2M_SUCCESS != nm_bus_ioctl(NM_BUS_IOCTL_R, &strUart))
{
M2M_ERR("read error\n");
s8Ret = M2M_ERR_BUS_FAIL;
}
}
else
{
M2M_ERR("write error (Error sending the block read command)\n");
s8Ret = M2M_ERR_BUS_FAIL;
}
}
else
{
strUart.pu8Buf = pu8Buf;
strUart.u16Sz = u16Sz;
if(M2M_SUCCESS != nm_bus_ioctl(NM_BUS_IOCTL_R, &strUart))
{
M2M_ERR("read error\n");
s8Ret = M2M_ERR_BUS_FAIL;
}
}
}
return s8Ret;
}
/**
* @fn nm_uart_write_block
* @brief Write block of data
* @param [in] u32Addr
* Start address
* @param [in] puBuf
* Pointer to the buffer holding the data to be written
* @param [in] u16Sz
* Number of bytes to write. The buffer size must be >= u16Sz
* @return M2M_SUCCESS in case of success and M2M_ERR_BUS_FAIL in case of failure
* @author Dina El Sissy
* @date 13 AUG 2012
* @version 1.0
*/
sint8 nm_uart_write_block(uint32 u32Addr, uint8 *puBuf, uint16 u16Sz)
{
tstrNmUartDefault strUart;
sint8 s8Ret = M2M_SUCCESS;
static uint8 au8Buf[HDR_SZ+1];
au8Buf[0] = 0xa5;
au8Buf[1] = 3;
au8Buf[2] = 0;
au8Buf[3] = (uint8)(u16Sz & 0x00ff);
au8Buf[4] = (uint8)((u16Sz & 0xff00)>>8);
au8Buf[5] = (uint8)(u32Addr & 0x000000ff);
au8Buf[6] = (uint8)((u32Addr & 0x0000ff00)>>8);
au8Buf[7] = (uint8)((u32Addr & 0x00ff0000)>>16);
au8Buf[8] = (uint8)((u32Addr & 0xff000000)>>24);
au8Buf[9] = 0;
au8Buf[10] = 0;
au8Buf[11] = 0;
au8Buf[12] = 0;
au8Buf[2] = get_cs(&au8Buf[1],HDR_SZ);
strUart.pu8Buf = au8Buf;
strUart.u16Sz = sizeof(au8Buf);
if(M2M_SUCCESS != nm_bus_ioctl(NM_BUS_IOCTL_W, &strUart))
{
M2M_ERR("write error\n");
s8Ret = M2M_ERR_BUS_FAIL;
}
else
{
if(!nm_bus_get_chip_type())
{
//check for the ack from the SAMD21 for the packet reception.
strUart.u16Sz = 1;
if(M2M_SUCCESS != nm_bus_ioctl(NM_BUS_IOCTL_R, &strUart))
{
s8Ret = M2M_ERR_BUS_FAIL;
}
if(au8Buf[0] == 0xAC)
{
M2M_DBG("Successfully sent the block Write command\n");
strUart.pu8Buf = puBuf;
strUart.u16Sz = u16Sz;
if(M2M_SUCCESS != nm_bus_ioctl(NM_BUS_IOCTL_W, &strUart))
{
M2M_ERR("write error\n");
s8Ret = M2M_ERR_BUS_FAIL;
}
else
{
//check for the ack from the SAMD21 for the payload reception.
strUart.pu8Buf = au8Buf;
strUart.u16Sz = 1;
if(M2M_SUCCESS != nm_bus_ioctl(NM_BUS_IOCTL_R, &strUart))
{
s8Ret = M2M_ERR_BUS_FAIL;
}
if(au8Buf[0] == 0xAC)
{
M2M_DBG("Successfully sent the data payload\n");
}
else
{
M2M_ERR("write error\n");
s8Ret = M2M_ERR_BUS_FAIL;
}
}
}
else
{
M2M_ERR("write error (Error sending the block write command)\n");
s8Ret = M2M_ERR_BUS_FAIL;
}
}
else
{
strUart.pu8Buf = puBuf;
strUart.u16Sz = u16Sz;
if(M2M_SUCCESS != nm_bus_ioctl(NM_BUS_IOCTL_W, &strUart))
{
M2M_ERR("write error\n");
s8Ret = M2M_ERR_BUS_FAIL;
}
}
}
return s8Ret;
}
/**
* @fn nm_uart_reconfigure
* @brief Reconfigures the UART interface
* @param [in] ptr
* Pointer to a DWORD containing baudrate at this moment.
* @return M2M_SUCCESS in case of success and M2M_ERR_BUS_FAIL in case of failure
* @author Viswanathan Murugesan
* @date 22 OCT 2014
* @version 1.0
*/
sint8 nm_uart_reconfigure(void *ptr)
{
tstrNmUartDefault strUart;
sint8 s8Ret = M2M_SUCCESS;
uint8 b[HDR_SZ+1];
/*write reg*/
b[0] = 0xa5;
b[1] = 5;
b[2] = 0;
b[3] = 0;
b[4] = 0;
b[5] = 0;
b[6] = 0;
b[7] = 0;
b[8] = 0;
b[9] = (uint8)((*(unsigned long *)ptr) & 0x000000ff);
b[10] = (uint8)(((*(unsigned long *)ptr) & 0x0000ff00)>>8);
b[11] = (uint8)(((*(unsigned long *)ptr) & 0x00ff0000)>>16);
b[12] = (uint8)(((*(unsigned long *)ptr) & 0xff000000)>>24);
b[2] = get_cs(&b[1],HDR_SZ);
get_cs(&b[1],HDR_SZ);
strUart.pu8Buf = b;
strUart.u16Sz = sizeof(b);
if(M2M_SUCCESS != nm_bus_ioctl(NM_BUS_IOCTL_W, &strUart))
{
M2M_ERR("write error\n");
s8Ret = M2M_ERR_BUS_FAIL;
}
else
{
if(!nm_bus_get_chip_type())
{
//check for the ack from the SAMD21 for the packet reception.
strUart.u16Sz = 1;
if(M2M_SUCCESS != nm_bus_ioctl(NM_BUS_IOCTL_R, &strUart))
{
s8Ret = M2M_ERR_BUS_FAIL;
}
if(b[0] == 0xAC)
{
M2M_DBG("Successfully sent the UART reconfigure command\n");
}
else
{
M2M_ERR("write error\n");
s8Ret = M2M_ERR_BUS_FAIL;
}
}
}
return s8Ret;
}
#endif
/* EOF */