fome-fw/firmware/controllers/trigger/rpm_calculator.cpp

272 lines
7.6 KiB
C++

/**
* @file rpm_calculator.cpp
* @brief RPM calculator
*
* Here we listen to position sensor events in order to figure our if engine is currently running or not.
* Actual getRpm() is calculated once per crankshaft revolution, based on the amount of time passed
* since the start of previous shaft revolution.
*
* @date Jan 1, 2013
* @author Andrey Belomutskiy, (c) 2012-2014
*/
#include "main.h"
#include "rpm_calculator.h"
#if EFI_WAVE_CHART
#include "wave_chart.h"
extern WaveChart waveChart;
#endif /* EFI_WAVE_CHART */
#if EFI_SHAFT_POSITION_INPUT || defined(__DOXYGEN__)
#include "trigger_central.h"
#include "engine_configuration.h"
#include "ec2.h"
#include "engine_math.h"
#if EFI_PROD_CODE
#include "rfiutil.h"
#include "engine.h"
#endif
#if EFI_ANALOG_CHART
#include "analog_chart.h"
#endif /* EFI_PROD_CODE */
#include "efilib2.h"
#define TOP_DEAD_CENTER_MESSAGE "r"
EXTERN_ENGINE
;
#if EFI_PROD_CODE || EFI_SIMULATOR
static Logging logger;
EXTERN_ENGINE
;
#endif
RpmCalculator::RpmCalculator() {
#if !EFI_PROD_CODE
mockRpm = MOCK_UNDEFINED;
#endif
setRpmValue(0);
// we need this initial to have not_running at first invocation
lastRpmEventTimeNt = (uint64_t) -10 * US2NT(US_PER_SECOND_LL);
revolutionCounterSinceStart = 0;
revolutionCounterSinceBoot = 0;
lastRpmEventTimeNt = 0;
}
/**
* @return true if there was a full shaft revolution within the last second
*/
bool RpmCalculator::isRunning(DECLARE_ENGINE_PARAMETER_F) {
engine_configuration2_s *engineConfiguration2 = engine->engineConfiguration2;
uint64_t nowNt = getTimeNowNt();
if (engineConfiguration2->stopEngineRequestTimeNt != 0) {
if (nowNt - lastRpmEventTimeNt < 3 * US2NT(US_PER_SECOND_LL)) {
return false;
}
}
return nowNt - lastRpmEventTimeNt < US2NT(US_PER_SECOND_LL);
}
void RpmCalculator::setRpmValue(int value) {
rpmValue = value;
if (rpmValue <= 0) {
oneDegreeUs = NAN;
} else {
oneDegreeUs = getOneDegreeTimeUs(rpmValue);
}
}
void RpmCalculator::onNewEngineCycle() {
revolutionCounterSinceBoot++;
revolutionCounterSinceStart++;
}
uint32_t RpmCalculator::getRevolutionCounter(void) {
return revolutionCounterSinceBoot;
}
uint32_t RpmCalculator::getRevolutionCounterSinceStart(void) {
return revolutionCounterSinceStart;
}
/**
* WARNING: this is a heavy method because 'getRpm()' is relatively heavy
*
* @return -1 in case of isNoisySignal(), current RPM otherwise
*/
// todo: migrate to float return result or add a float verion? this would have with calculations
// todo: add a version which does not check time & saves time? need to profile
int RpmCalculator::rpm(DECLARE_ENGINE_PARAMETER_F) {
#if !EFI_PROD_CODE
if (mockRpm != MOCK_UNDEFINED)
return mockRpm;
#endif
if (!isRunning(PASS_ENGINE_PARAMETER_F)) {
revolutionCounterSinceStart = 0;
return 0;
}
return rpmValue;
}
#if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__)
bool isCrankingE(Engine *engine) {
int rpm = getRpmE(engine);
return isCrankingR(rpm);
}
/**
* WARNING: this is a heavy method because 'getRpm()' is relatively heavy
*/
bool isCranking(void) {
return isCrankingE(engine);
}
#endif
extern uint32_t triggerHanlderEntryTime;
/**
* @brief Shaft position callback used by RPM calculation logic.
*
* This callback should always be the first of trigger callbacks because other callbacks depend of values
* updated here.
* This callback is invoked on interrupt thread.
*/
void rpmShaftPositionCallback(trigger_event_e ckpSignalType, uint32_t index DECLARE_ENGINE_PARAMETER_S) {
RpmCalculator *rpmState = &engine->rpmCalculator;
uint64_t nowNt = getTimeNowNt();
#if EFI_PROD_CODE
efiAssertVoid(getRemainingStack(chThdSelf()) > 256, "lowstck#2z");
#endif
if (index != 0) {
#if EFI_ANALOG_CHART || defined(__DOXYGEN__)
if (engineConfiguration->analogChartMode == AC_TRIGGER)
acAddData(getCrankshaftAngleNt(nowNt PASS_ENGINE_PARAMETER), 1000 * ckpSignalType + index);
#endif
return;
}
bool hadRpmRecently = rpmState->isRunning(PASS_ENGINE_PARAMETER_F);
if (hadRpmRecently) {
uint64_t diffNt = nowNt - rpmState->lastRpmEventTimeNt;
/**
* Four stroke cycle is two crankshaft revolutions
*
* We always do '* 2' because the event signal is already adjusted to 'per engine cycle'
* and each revolution of crankshaft consists of two engine cycles revolutions
*
*/
if (diffNt == 0) {
rpmState->setRpmValue(NOISY_RPM);
} else {
// todo: interesting what is this *2 about? four stroke magic constant?
int rpm = (int) (60 * US2NT(US_PER_SECOND_LL) * 2 / diffNt);
rpmState->setRpmValue(rpm > UNREALISTIC_RPM ? NOISY_RPM : rpm);
}
}
rpmState->onNewEngineCycle();
rpmState->lastRpmEventTimeNt = nowNt;
#if EFI_ANALOG_CHART || defined(__DOXYGEN__)
if (engineConfiguration->analogChartMode == AC_TRIGGER)
acAddData(getCrankshaftAngleNt(nowNt PASS_ENGINE_PARAMETER), index);
#endif
}
static scheduling_s tdcScheduler[2];
static char rpmBuffer[10];
#if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__)
/**
* This callback has nothing to do with actual engine control, it just sends a Top Dead Center mark to the dev console
* digital sniffer.
*/
static void onTdcCallback(void) {
itoa10(rpmBuffer, getRpm());
addWaveChartEvent(TOP_DEAD_CENTER_MESSAGE, (char* ) rpmBuffer);
}
/**
* This trigger callback schedules the actual physical TDC callback in relation to trigger synchronization point.
*/
static void tdcMarkCallback(trigger_event_e ckpSignalType, uint32_t index0 DECLARE_ENGINE_PARAMETER_S) {
(void) ckpSignalType;
bool isTriggerSynchronizationPoint = index0 == 0;
if (isTriggerSynchronizationPoint) {
int revIndex2 = engine->rpmCalculator.getRevolutionCounter() % 2;
int rpm = getRpm();
// todo: use event-based scheduling, not just time-based scheduling
scheduleByAngle(rpm, &tdcScheduler[revIndex2], engineConfiguration->globalTriggerAngleOffset,
(schfunc_t) onTdcCallback, NULL);
}
}
#endif
#if EFI_PROD_CODE || EFI_SIMULATOR
int getRevolutionCounter() {
return engine->rpmCalculator.getRevolutionCounter();
}
#endif
/**
* @return Current crankshaft angle, 0 to 720 for four-stroke
*/
float getCrankshaftAngleNt(uint64_t timeNt DECLARE_ENGINE_PARAMETER_S) {
uint64_t timeSinceZeroAngleNt = timeNt - engine->rpmCalculator.lastRpmEventTimeNt;
/**
* even if we use 'getOneDegreeTimeUs' macros here, it looks like the
* compiler is not smart enough to figure out that "A / ( B / C)" could be optimized into
* "A * C / B" in order to replace a slower division with a faster multiplication.
*/
return timeSinceZeroAngleNt / getOneDegreeTimeNt(engine->rpmCalculator.rpm(PASS_ENGINE_PARAMETER_F));
}
void initRpmCalculator(Engine *engine) {
#if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__)
initLogging(&logger, "rpm calc");
tdcScheduler[0].name = "tdc0";
tdcScheduler[1].name = "tdc1";
addTriggerEventListener(tdcMarkCallback, "chart TDC mark", engine);
#endif
addTriggerEventListener(rpmShaftPositionCallback, "rpm reporter", engine);
}
#if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__)
/**
* Schedules a callback 'angle' degree of crankshaft from now.
* The callback would be executed once after the duration of time which
* it takes the crankshaft to rotate to the specified angle.
*/
void scheduleByAngle(int rpm, scheduling_s *timer, float angle, schfunc_t callback, void *param) {
if (!isValidRpm(rpm)) {
/**
* this might happen in case of a single trigger event after a pause - this is normal, so no
* warning here
*/
return;
}
float delayUs = getOneDegreeTimeUs(rpm) * angle;
if (cisnan(delayUs)) {
firmwareError("NaN delay?");
return;
}
scheduleTask("by angle", timer, (int) delayUs, callback, param);
}
#endif
#endif /* EFI_SHAFT_POSITION_INPUT */