fome-fw/firmware/controllers/math/engine_math.cpp

397 lines
13 KiB
C++

/**
* @file engine_math.cpp
* @brief
*
* @date Jul 13, 2013
* @author Andrey Belomutskiy, (c) 2012-2014
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "main.h"
#include "engine_math.h"
#include "engine_configuration.h"
#include "interpolation.h"
#include "allsensors.h"
#include "io_pins.h"
#include "OutputSignalList.h"
#include "trigger_decoder.h"
#include "event_registry.h"
#include "efiGpio.h"
EXTERN_ENGINE;
/*
* default Volumetric Efficiency
*/
//float getDefaultVE(int rpm) {
// if (rpm > 5000)
// return interpolate(5000, 1.1, 8000, 1, rpm);
// return interpolate(500, 0.5, 5000, 1.1, rpm);
//}
/**
* @return number of milliseconds in one crankshaft revolution
*/
float getCrankshaftRevolutionTimeMs(int rpm) {
return 360 * getOneDegreeTimeMs(rpm);
}
/**
* @brief Shifts angle into the [0..720) range
* TODO: should be 'crankAngleRange' range?
*/
float fixAngle(float angle DECLARE_ENGINE_PARAMETER_S) {
efiAssert(engineConfiguration->engineCycle!=0, "engine cycle", NAN);
// I guess this implementation would be faster than 'angle % 720'
while (angle < 0)
angle += engineConfiguration->engineCycle;
while (angle >= engineConfiguration->engineCycle)
angle -= engineConfiguration->engineCycle;
return angle;
}
/**
* @brief Returns engine load according to selected engine_load_mode
*
*/
float getEngineLoadT(Engine *engine) {
efiAssert(engine!=NULL, "engine 2NULL", NAN);
engine_configuration_s *engineConfiguration = engine->engineConfiguration;
efiAssert(engineConfiguration!=NULL, "engineConfiguration 2NULL", NAN);
switch (engineConfiguration->algorithm) {
case LM_MAF:
return getMafT(engineConfiguration);
case LM_SPEED_DENSITY:
// SD engine load is used for timing lookup but not for fuel calculation
case LM_MAP:
return getMap();
case LM_ALPHA_N:
return getTPS(engineConfiguration);
default:
firmwareError("Unexpected engine load parameter: %d", engineConfiguration->algorithm);
return -1;
}
}
void setSingleCoilDwell(engine_configuration_s *engineConfiguration) {
for (int i = 0; i < DWELL_CURVE_SIZE; i++) {
engineConfiguration->sparkDwellBins[i] = 0;
engineConfiguration->sparkDwell[i] = -1;
}
engineConfiguration->sparkDwellBins[5] = 1;
engineConfiguration->sparkDwell[5] = 4;
engineConfiguration->sparkDwellBins[6] = 4500;
engineConfiguration->sparkDwell[6] = 4;
engineConfiguration->sparkDwellBins[7] = 12500;
engineConfiguration->sparkDwell[7] = 0;
}
int isCrankingRT(engine_configuration_s *engineConfiguration, int rpm) {
return rpm > 0 && rpm < engineConfiguration->crankingSettings.crankingRpm;
}
OutputSignalList injectonSignals CCM_OPTIONAL
;
static void registerSparkEvent(trigger_shape_s * s,
IgnitionEventList *list, io_pin_e pin, float localAdvance, float dwell DECLARE_ENGINE_PARAMETER_S) {
IgnitionEvent *event = list->getNextActuatorEvent();
if (event == NULL)
return; // error already reported
if (!isPinAssigned(pin)) {
// todo: extact method for this index math
warning(OBD_PCM_Processor_Fault, "no_pin_cl #%d", (int) pin - (int) SPARKOUT_1_OUTPUT + 1);
}
event->io_pin = pin;
event->advance = localAdvance;
findTriggerPosition(s, &event->dwellPosition, localAdvance - dwell PASS_ENGINE_PARAMETER);
}
void initializeIgnitionActions(float advance, float dwellAngle,
engine_configuration2_s *engineConfiguration2, IgnitionEventList *list DECLARE_ENGINE_PARAMETER_S) {
efiAssertVoid(engineConfiguration->cylindersCount > 0, "cylindersCount");
list->resetEventList();
switch (engineConfiguration->ignitionMode) {
case IM_ONE_COIL:
for (int i = 0; i < engineConfiguration->cylindersCount; i++) {
// todo: extract method
float localAdvance = advance + (float) engineConfiguration->engineCycle * i / engineConfiguration->cylindersCount;
registerSparkEvent(&engineConfiguration2->triggerShape, list, SPARKOUT_1_OUTPUT,
localAdvance, dwellAngle PASS_ENGINE_PARAMETER);
}
break;
case IM_WASTED_SPARK:
for (int i = 0; i < engineConfiguration->cylindersCount; i++) {
float localAdvance = advance + (float) engineConfiguration->engineCycle * i / engineConfiguration->cylindersCount;
int wastedIndex = i % (engineConfiguration->cylindersCount / 2);
int id = getCylinderId(engineConfiguration->firingOrder, wastedIndex) - 1;
io_pin_e ioPin = (io_pin_e) (SPARKOUT_1_OUTPUT + id);
registerSparkEvent(&engineConfiguration2->triggerShape, list, ioPin, localAdvance,
dwellAngle PASS_ENGINE_PARAMETER);
}
break;
case IM_INDIVIDUAL_COILS:
for (int i = 0; i < engineConfiguration->cylindersCount; i++) {
float localAdvance = advance + (float) engineConfiguration->engineCycle * i / engineConfiguration->cylindersCount;
io_pin_e pin = (io_pin_e) ((int) SPARKOUT_1_OUTPUT + getCylinderId(engineConfiguration->firingOrder, i) - 1);
registerSparkEvent(&engineConfiguration2->triggerShape, list, pin, localAdvance,
dwellAngle PASS_ENGINE_PARAMETER);
}
break;
default:
firmwareError("unsupported ignitionMode %d in initializeIgnitionActions()", engineConfiguration->ignitionMode);
}
}
void FuelSchedule::registerInjectionEvent(trigger_shape_s *s,
io_pin_e pin, float angle, bool_t isSimultanious DECLARE_ENGINE_PARAMETER_S) {
ActuatorEventList *list = &events;
if (!isSimultanious && !isPinAssigned(pin)) {
// todo: extact method for this index math
warning(OBD_PCM_Processor_Fault, "no_pin_inj #%d", (int) pin - (int) INJECTOR_1_OUTPUT + 1);
}
InjectionEvent *ev = list->getNextActuatorEvent();
OutputSignal *actuator = injectonSignals.add(pin);
ev->isSimultanious = isSimultanious;
efiAssertVoid(s->getSize() > 0, "uninitialized trigger_shape_s");
if (ev == NULL) {
// error already reported
return;
}
ev->actuator = actuator;
findTriggerPosition(s, &ev->position, angle PASS_ENGINE_PARAMETER);
hasEvents[ev->position.eventIndex] = true;
}
FuelSchedule::FuelSchedule() {
clear();
}
void FuelSchedule::clear() {
memset(hasEvents, 0, sizeof(hasEvents));
}
void FuelSchedule::addFuelEvents(trigger_shape_s *s,
injection_mode_e mode DECLARE_ENGINE_PARAMETER_S) {
ActuatorEventList *list = &events;
;
list->resetEventList();
float baseAngle = engineConfiguration->globalTriggerAngleOffset + engineConfiguration->injectionOffset;
switch (mode) {
case IM_SEQUENTIAL:
for (int i = 0; i < engineConfiguration->cylindersCount; i++) {
io_pin_e pin = INJECTOR_PIN_BY_INDEX(getCylinderId(engineConfiguration->firingOrder, i) - 1);
float angle = baseAngle + (float) engineConfiguration->engineCycle * i / engineConfiguration->cylindersCount;
registerInjectionEvent(s, pin, angle, false PASS_ENGINE_PARAMETER);
}
break;
case IM_SIMULTANEOUS:
for (int i = 0; i < engineConfiguration->cylindersCount; i++) {
float angle = baseAngle + (float) engineConfiguration->engineCycle * i / engineConfiguration->cylindersCount;
/**
* We do not need injector pin here because we will control all injectors
* simultaniously
*/
registerInjectionEvent(s, IO_INVALID, angle, true PASS_ENGINE_PARAMETER);
}
break;
case IM_BATCH:
for (int i = 0; i < engineConfiguration->cylindersCount; i++) {
int index = i % (engineConfiguration->cylindersCount / 2);
io_pin_e pin = INJECTOR_PIN_BY_INDEX(index);
float angle = baseAngle + i * (float) engineConfiguration->engineCycle / engineConfiguration->cylindersCount;
registerInjectionEvent(s, pin, angle, false PASS_ENGINE_PARAMETER);
/**
* also fire the 2nd half of the injectors so that we can implement a batch mode on individual wires
*/
pin = INJECTOR_PIN_BY_INDEX(index + (engineConfiguration->cylindersCount / 2));
registerInjectionEvent(s, pin, angle, false PASS_ENGINE_PARAMETER);
}
break;
default:
firmwareError("Unexpected injection mode %d", mode);
}
}
/**
* @return Spark dwell time, in milliseconds.
*/
float getSparkDwellMsT(int rpm DECLARE_ENGINE_PARAMETER_S) {
if (isCrankingR(rpm)) {
if(engineConfiguration->useConstantDwellDuringCranking) {
return engineConfiguration->ignitionDwellForCrankingMs;
} else {
// technically this could be implemented via interpolate2d
float angle = engineConfiguration->crankingChargeAngle;
return getOneDegreeTimeMs(rpm) * angle;
}
}
efiAssert(!cisnan(rpm), "invalid rpm", NAN);
return interpolate2d(rpm, engineConfiguration->sparkDwellBins, engineConfiguration->sparkDwell, DWELL_CURVE_SIZE);
}
int getEngineCycleEventCount2(operation_mode_e mode, trigger_shape_s * s) {
return mode == FOUR_STROKE_CAM_SENSOR ? s->getSize() : 2 * s->getSize();
}
/**
* Trigger event count equals engine cycle event count if we have a cam sensor.
* Two trigger cycles make one engine cycle in case of a four stroke engine If we only have a cranksensor.
*/
int getEngineCycleEventCount(engine_configuration_s const *engineConfiguration, trigger_shape_s * s) {
return getEngineCycleEventCount2(getOperationMode(engineConfiguration), s);
}
void findTriggerPosition(trigger_shape_s * s,
event_trigger_position_s *position, float angleOffset DECLARE_ENGINE_PARAMETER_S) {
angleOffset = fixAngle(angleOffset + engineConfiguration->globalTriggerAngleOffset PASS_ENGINE_PARAMETER);
int engineCycleEventCount = getEngineCycleEventCount(engineConfiguration, s);
efiAssertVoid(engineCycleEventCount > 0, "engineCycleEventCount");
uint32_t middle;
uint32_t left = 0;
uint32_t right = engineCycleEventCount - 1;
/**
* Let's find the last trigger angle which is less or equal to the desired angle
* todo: extract binary search as template method?
*/
while (true) {
middle = (left + right) / 2;
if (middle == left) {
break;
}
if (angleOffset < s->eventAngles[middle]) {
right = middle;
} else if (angleOffset > s->eventAngles[middle]) {
left = middle;
} else {
break;
}
}
float eventAngle = s->eventAngles[middle];
if (angleOffset < eventAngle) {
firmwareError("angle constraint violation in registerActuatorEventExt(): %f/%f", angleOffset, eventAngle);
return;
}
position->eventIndex = middle;
position->eventAngle = eventAngle;
position->angleOffset = angleOffset - eventAngle;
}
static int order_1_THEN_3_THEN_4_THEN2[] = { 1, 3, 4, 2 };
static int order_1_THEN_5_THEN_3_THEN_6_THEN_2_THEN_4[] = { 1, 5, 3, 6, 2, 4 };
static int order_1_8_4_3_6_5_7_2[] = { 1, 8, 4, 3, 6, 5, 7, 2 };
/**
* @param index from zero to cylindersCount - 1
* @return cylinderId from one to cylindersCount
*/
int getCylinderId(firing_order_e firingOrder, int index) {
switch (firingOrder) {
case FO_ONE_CYLINDER:
return 1;
case FO_1_THEN_3_THEN_4_THEN2:
return order_1_THEN_3_THEN_4_THEN2[index];
case FO_1_THEN_5_THEN_3_THEN_6_THEN_2_THEN_4:
return order_1_THEN_5_THEN_3_THEN_6_THEN_2_THEN_4[index];
case FO_1_8_4_3_6_5_7_2:
return order_1_8_4_3_6_5_7_2[index];
default:
firmwareError("getCylinderId not supported for %d", firingOrder);
}
return -1;
}
void prepareOutputSignals(Engine *engine) {
engine_configuration_s *engineConfiguration = engine->engineConfiguration;
engine_configuration2_s *engineConfiguration2 = engine->engineConfiguration2;
// todo: move this reset into decoder
engineConfiguration2->triggerShape.calculateTriggerSynchPoint(engineConfiguration, &engineConfiguration->triggerConfig, engine);
trigger_shape_s * ts = &engineConfiguration2->triggerShape;
injectonSignals.clear();
engineConfiguration2->crankingInjectionEvents.addFuelEvents(ts,
engineConfiguration->crankingInjectionMode PASS_ENGINE_PARAMETER);
engineConfiguration2->injectionEvents.addFuelEvents(ts,
engineConfiguration->injectionMode PASS_ENGINE_PARAMETER);
}
void setFuelRpmBin(engine_configuration_s *engineConfiguration, float l, float r) {
setTableBin(engineConfiguration->fuelRpmBins, FUEL_RPM_COUNT, l, r);
}
void setFuelLoadBin(engine_configuration_s *engineConfiguration, float l, float r) {
setTableBin(engineConfiguration->fuelLoadBins, FUEL_LOAD_COUNT, l, r);
}
void setTimingRpmBin(engine_configuration_s *engineConfiguration, float l, float r) {
setTableBin(engineConfiguration->ignitionRpmBins, IGN_RPM_COUNT, l, r);
}
void setTimingLoadBin(engine_configuration_s *engineConfiguration, float l, float r) {
setTableBin(engineConfiguration->ignitionLoadBins, IGN_LOAD_COUNT, l, r);
}
int isInjectionEnabled(engine_configuration_s *engineConfiguration) {
// todo: is this worth a method? should this be inlined?
return engineConfiguration->isInjectionEnabled;
}