fome-fw/firmware/config/boards/hellen/hellen_board_id.cpp

383 lines
14 KiB
C++

/**
* @file boards/hellen/hellen_board_id.cpp
* @brief Board-Id detector for Hellen boards
*
* @author andreika <prometheus.pcb@gmail.com>
* @author Andrey Belomutskiy, (c) 2012-2022
*
* The main idea is to measure the capacitor charge/discharge time
* through a series resistors using standard digital I/O pins.
* One pin is used to provide a Vcc(3.3) or Vdd(0) voltage to the capacitor
* through a resistor, and another pin is used as a digital input. Then vice versa.
*
* The algo:
* 1) Completely discharge the capacitor (all pins are low)
* 2) Charge the capacitor until the voltage crosses the 0->1 voltage threshold (Vt) and measure the charging time #1 (Tc1).
* 3) Immediately discharge the capacitor to some unknown low voltage (Vl) - it should be well below the Vt threshold,
* using the same period of time used for charging as the discharge period (Td = Tc1).
* 4) Immediately charge the capacitor again and measure the time crossing the same 0->1 voltage threshold again (Tc2).
* 5) Repeat the procedure several times to get more precise timings.
* 6) Do some math and find the R and C values.
* 7) Board_Id = the unique combination of indices of the "measured" R1 and R2.
*
* The math proof:
* - Charging formula #1:
* Vt = Vññ * (1 - exp(-Tc1 / RC))
* - Discharging formula:
* Vl = Vt * exp(-Td / RC)
* - Charging formula #2:
* Vl = Vññ * (1 - exp(-Tl / (RC)))
* - Where Tl is a charging time from 0 to Vl:
* Tl = Tc1 - Tc2
* - Solve the equations:
* Vl = Vññ * (1 - exp(-Tl / RC)) = Vt * exp(-Td / RC)
* Vññ * (1 - exp(-Tl / RC)) = Vññ * (1 - exp(-Tc1 / RC)) * exp(-Td / RC)
* (1 - exp(-Tl / RC)) = (1 - exp(-Tc1 / RC)) * exp(-Td / RC)
* - Simplify the equation:
* X = exp(-1/(RC))
* (1 - X^Tc1) * X^Td + X^Tl - 1 = 0
*
* X^Td - X^(Tc1+Td) + X^(Tc2-Tc1) - 1 = 0
*
* Td, Tc1 and Tc2 are known.
* - Solve the power function for X and get the desired R or C.
*
* We use Newton's method (a fast-converging numerical solver when the 1st derivative is known)
* with estimated initial values.
*/
#include "pch.h"
#include "hellen_meta.h"
#include "digital_input_exti.h"
#include "hellen_board_id.h"
/* We use known standard E24 series resistor values (1%) to find the closest match.
The 16 major values should have a guarateed spacing of 15% in a row (1% R tolerance + 10% C tolerance)
These should match the values in the gen_board_id script!
*/
#include "hellen_board_id_resistors.h"
//#define HELLEN_BOARD_ID_DEBUG
#if EFI_PROD_CODE
#if STM32_GPT_USE_TIM6
#define HELLEN_BOARD_ID_GPTDEVICE GPTD6
#else
#error "STM32_GPT_USE_TIM6 is required for Hellen Board-ID detector!"
#endif /* STM32_GPT_USE_TIM6 */
static void hellenBoardIdInputCallback(void *arg, efitick_t nowNt) {
UNUSED(arg);
chibios_rt::CriticalSectionLocker csl;
HellenBoardIdFinderState *state = (HellenBoardIdFinderState *)arg;
// Now start discharging immediately! This should be the first command in the interrupt handler.
palClearPad(state->rOutputPinPort, state->rOutputPinIdx);
state->timeChargeNt = nowNt;
chSemSignalI(&state->boardId_wake); // no need to call chSchRescheduleS() because we're inside the ISR
}
#endif /* EFI_PROD_CODE */
// Newton's numerical method (x is R and y is C, or vice-versa)
float HellenBoardIdSolver::solve(float Tc1, float Tc2, float x0, float y, float deltaX) {
// the discharge time equals to the charge time
float Td = Tc1;
float iC = -1.0f / y;
k1 = iC * Td;
k2 = iC * (Tc1 + Td);
k3 = iC * (Tc1 - Tc2);
// the same method works for R (if C is known) or C (if R is known)
float Xcur, Xnext;
Xnext = x0;
do {
Xcur = Xnext;
Xnext = Xcur - fx(Xcur) / dfx(Xcur);
#ifdef HELLEN_BOARD_ID_DEBUG
efiPrintf ("* %f", Xnext);
#endif /* HELLEN_BOARD_ID_DEBUG */
} while (absF(Xnext - Xcur) > deltaX);
return Xnext;
}
float HellenBoardIdFinderBase::findClosestResistor(float R, bool testOnlyMajorSeries, int *rIdx) {
// the first "major" resistor uses less values (with more spacing between them) so that even less precise method cannot fail.
static const float rOnlyMajorValues[] = {
HELLEN_BOARD_ID_MAJOR_RESISTORS
};
// the minor resistor is always measured after the major one, when the exact capacitance is already knows,
// so we can use more values and detect them with better precision.
static const float rAllValues[] = {
// these are equal to the major values and should be used first
HELLEN_BOARD_ID_MAJOR_RESISTORS
// these are extended series if 256 board IDs aren't enough (16*16).
HELLEN_BOARD_ID_MINOR_RESISTORS
};
size_t rValueSize = testOnlyMajorSeries ? efi::size(rOnlyMajorValues) : efi::size(rAllValues);
*rIdx = -1;
float minDelta = 1.e6f;
for (size_t i = 0; i < rValueSize; i++) {
float delta = absF(R - rAllValues[i]);
if (delta < minDelta) {
minDelta = delta;
*rIdx = i;
#ifdef HELLEN_BOARD_ID_DEBUG
efiPrintf("* [%d] R = %.0f, delta = %f", i, rAllValues[i], delta);
#endif /* HELLEN_BOARD_ID_DEBUG */
}
}
return rAllValues[*rIdx];
}
float HellenBoardIdFinderBase::calcEstimatedResistance(float Tc1_us, float C) {
constexpr float Vcc = 3.3f - 0.1f; // STM32 digital I/O voltage (adjusted for minor voltage drop)
constexpr float V01 = Vcc * 0.5f; // let it be 1.6 volts (closer to the datasheet value), the exact value doesn't matter
// macos compiler doesn't like log() in constexpr
float log1V01Vcc = log(1.0f - V01 / Vcc);
// this is only an estimated value, we cannot use it for Board-ID detection!
float Rest = -Tc1_us / (C * log1V01Vcc);
return Rest;
}
float HellenBoardIdFinderBase::calc(float Tc1_us, float Tc2_us, float Rest, float C, bool testOnlyMajorSeries, float *Rmeasured, float *newC, int *rIdx) {
constexpr float Cest = HELLEN_BOARD_ID_CAPACITOR;
// Now calculate the resistance value
HellenBoardIdSolver rSolver;
// solve the equation for R (1 Ohm precision is more than enough)
*Rmeasured = rSolver.solve(Tc1_us, Tc2_us, Rest, C, 1.0f);
// add 30 Ohms for pin's internal resistance
// (according to the STM32 datasheets, the voltage drop on an output pin can be up to 0.4V for 8 mA current)
constexpr float Rinternal = 30.0f;
float R = findClosestResistor(*Rmeasured - Rinternal, testOnlyMajorSeries, rIdx);
// Find the 'real' capacitance value and use it for the next resistor iteration (gives more precision)
HellenBoardIdSolver cSolver;
// We expect the capacitance to be +-10%
constexpr float capacitorPrecision = 0.1f;
constexpr float Cmin = Cest * (1.0f - capacitorPrecision);
constexpr float Cmax = Cest * (1.0f + capacitorPrecision);
// solve the equation for C (1% precision)
*newC = cSolver.solve(Tc1_us, Tc2_us, Cmin, R + Rinternal, 0.01f);
// in case something went wrong, we must be in the allowed range
*newC = clampF(Cmin, *newC, Cmax);
return R;
}
template <size_t NumPins>
bool HellenBoardIdFinder<NumPins>::measureChargingTimes(int i, float & Tc1_us, float & Tc2_us) {
#if EFI_PROD_CODE
chSemReset(&state.boardId_wake, 0);
// full charge/discharge time, and also 'timeout' time
const int Tf_us = 50000; // 50 ms is more than enough to "fully" discharge the capacitor with any two resistors used at the same time.
// 1. Fully discharge the capacitor through both resistors (faster)
for (size_t k = 0; k < NumPins; k++) {
palClearPad(getBrainPinPort(rPins[k]), getBrainPinIndex(rPins[k]));
palSetPadMode(getBrainPinPort(rPins[k]), getBrainPinIndex(rPins[k]), PAL_MODE_OUTPUT_PUSHPULL);
}
// wait max. time because we don't know the resistor values yet
chThdSleepMicroseconds(Tf_us);
// use one pin as an charge/discharge controlling output
state.rOutputPinPort = getBrainPinPort(rPins[i]);
state.rOutputPinIdx = getBrainPinIndex(rPins[i]);
palSetPadMode(state.rOutputPinPort, state.rOutputPinIdx, PAL_MODE_OUTPUT_PUSHPULL);
// use another pin as an input to detect 0->1 crossings
int inputIdx = 1 - i;
state.rInputPinPort = getBrainPinPort(rPins[inputIdx]);
state.rInputPinIdx = getBrainPinIndex(rPins[inputIdx]);
// set only high-Z input mode, no pull-ups/pull-downs allowed!
palSetPadMode(state.rInputPinPort, state.rInputPinIdx, PAL_MODE_INPUT);
efiExtiEnablePin("boardId", rPins[inputIdx], PAL_EVENT_MODE_RISING_EDGE, hellenBoardIdInputCallback, (void *)&state);
int pinState = palReadPad(state.rInputPinPort, state.rInputPinIdx);
if (pinState != 0) {
// the input pin state should be low when the capacitor is fully discharged
efiPrintf("* Board detection error!");
return false;
}
// 2. Start charging until the input pin triggers (V01 threshold is reached)
state.timeChargeNt = 0;
efitick_t nowNt1 = getTimeNowNt();
palSetPad(state.rOutputPinPort, state.rOutputPinIdx);
chSemWaitTimeout(&state.boardId_wake, TIME_US2I(Tf_us));
// 3. At the moment, the discharging has already been started!
// Meanwhile we need to do some checks - until some pre-selected voltage is presumably reached.
// if voltage didn't change on the input pin, then the charging didn't start,
// meaning there's no capacitor and/or resistors on these pins.
if (state.timeChargeNt <= nowNt1) {
efiPrintf("* Hellen Board ID circuitry wasn't detected! Aborting!");
return false;
}
// 4. calculate the first charging time
Tc1_us = NT2USF(state.timeChargeNt - nowNt1);
// We use the same 'charging time' to discharge the capacitor to some random voltage below the threshold voltage.
float Td_us = Tc1_us;
// we can make a tiny delay adjustments to compensate for the code execution overhead (every usec matters!)
efitick_t nowNt2 = getTimeNowNt();
float TdAdj_us = NT2USF(nowNt2 - state.timeChargeNt);
// 5. And now just wait for the rest of the discharge process...
// We cannot use chThdSleepMicroseconds() here because we need more precise delay
gptPolledDelay(&HELLEN_BOARD_ID_GPTDEVICE, Td_us - TdAdj_us);
// the input pin state should be low when the capacitor is discharged to Vl
pinState = palReadPad(state.rInputPinPort, state.rInputPinIdx);
// 6. And immediately begin charging again until the threshold voltage is reached!
state.timeChargeNt = 0;
palSetPad(state.rOutputPinPort, state.rOutputPinIdx);
// Wait for the charging completion
efitick_t nowNt3 = getTimeNowNt();
chSemReset(&state.boardId_wake, 0);
chSemWaitTimeout(&state.boardId_wake, TIME_US2I(Tf_us));
// 7. calculate the second charge time
Tc2_us = NT2USF(state.timeChargeNt - nowNt3);
#ifdef HELLEN_BOARD_ID_DEBUG
efitick_t nowNt4 = getTimeNowNt();
efiPrintf("* dTime21 = %d", (int)(nowNt2 - nowNt1));
efiPrintf("* dTime32 = %d", (int)(nowNt3 - nowNt2));
efiPrintf("* dTime43 = %d", (int)(nowNt4 - nowNt3));
efiPrintf("* Tc1 = %f, Tc2 = %f, Td = %f, TdAdj = %f", Tc1_us, Tc2_us, Td_us, TdAdj_us);
#endif /* HELLEN_BOARD_ID_DEBUG */
// sanity checks
if (pinState != 0) {
efiPrintf("* Board detection error! (Td=%f is too small)", Td_us);
return false;
}
if (state.timeChargeNt <= nowNt3) {
efiPrintf("* Estimates are out of limit! Something went wrong. Aborting!");
return false;
}
efiExtiDisablePin(rPins[inputIdx]);
#endif /* EFI_PROD_CODE */
return true;
}
template <size_t NumPins>
bool HellenBoardIdFinder<NumPins>::measureChargingTimesAveraged(int i, float & Tc1_us, float & Tc2_us) {
const int numTries = 3;
Tc1_us = 0;
Tc2_us = 0;
for (int tries = 0; tries < numTries; tries++) {
// get the charging times
float Tc1i_us = 0, Tc2i_us = 0;
if (!measureChargingTimes(i, Tc1i_us, Tc2i_us))
return false;
Tc1_us += Tc1i_us;
Tc2_us += Tc2i_us;
}
// averaging
Tc1_us /= numTries;
Tc2_us /= numTries;
return true;
}
int detectHellenBoardId() {
int boardId = 0;
#if EFI_PROD_CODE
efiPrintf("Starting Hellen Board ID detection...");
efitick_t beginNt = getTimeNowNt();
// Hellen boards use GPIOF_0 and GPIOF_1.
const int numPins = 2;
brain_pin_e rPins[numPins] = { GPIOF_0, GPIOF_1 };
// We start from the estimated capacitance, but the real one can be +-10%
float C = HELLEN_BOARD_ID_CAPACITOR;
// we need to find the resistor values connected to the mcu pins and to the capacitor.
float R[numPins] = { 0 };
int rIdx[numPins] = { 0 };
HellenBoardIdFinder<numPins> finder(rPins);
// init some ChibiOs objects
chSemObjectInit(&finder.state.boardId_wake, 0);
static constexpr GPTConfig gptCfg = { 1000000 /* 1 MHz timer clock.*/, NULL, 0, 0 };
gptStart(&HELLEN_BOARD_ID_GPTDEVICE, &gptCfg);
// R1 is the first, R2 is the second
for (int i = 0; i < numPins; i++) {
#ifdef HELLEN_BOARD_ID_DEBUG
efiPrintf("*** Resistor R%d...", i + 1);
#endif /* HELLEN_BOARD_ID_DEBUG */
float Tc1_us = 0, Tc2_us = 0;
// We need several measurements for each resistor to increase the presision.
// But if any of the measurements fails, then abort!
if (!finder.measureChargingTimesAveraged(i, Tc1_us, Tc2_us))
break;
// Now roughly estimate the resistor value using the approximate threshold voltage.
float Rest = finder.calcEstimatedResistance(Tc1_us, C);
// check if we are inside the range
if (Rest < 300.0f || Rest > 15000.0f) {
efiPrintf("* Unrealistic estimated resistor value (%f)! Aborting!", Rest);
break;
}
// for the first resistor, we test only "major" values because we don't know the exact capacitance yet
bool testOnlyMajorSeries = (i == 0);
float Rmeasured, newC;
// Now calculate the R and C
R[i] = finder.calc(Tc1_us, Tc2_us, Rest, C, testOnlyMajorSeries, &Rmeasured, &newC, &rIdx[i]);
C = newC;
#ifdef HELLEN_BOARD_ID_DEBUG
efiPrintf("* R = %f, Rmeasured = %f, Rest = %f, Creal = %f", R[i], Rmeasured, Rest, C);
#endif /* HELLEN_BOARD_ID_DEBUG */
}
// in case the process was aborted
for (size_t k = 0; k < numPins; k++) {
efiExtiDisablePin(rPins[k]);
// release the pins
palSetPadMode(getBrainPinPort(rPins[k]), getBrainPinIndex(rPins[k]), PAL_MODE_RESET);
}
gptStop(&HELLEN_BOARD_ID_GPTDEVICE);
efitick_t endNt = getTimeNowNt();
int elapsed_Ms = US2MS(NT2US(endNt - beginNt));
boardId = HELLEN_GET_BOARD_ID(rIdx[0], rIdx[1]);
efiPrintf("* RESULT: BoardId = %d, R1 = %.0f, R2 = %.0f (Elapsed time: %d ms)", boardId, R[0], R[1], elapsed_Ms);
#endif /* EFI_PROD_CODE */
return boardId;
}