fome-fw/firmware/controllers/engine_cycle/fuel_schedule.cpp

413 lines
14 KiB
C++

/**
* @file fuel_schedule.cpp
*
* Handles injection scheduling
*/
#include "pch.h"
#include "fuel_math.h"
#if EFI_ENGINE_CONTROL
extern bool printFuelDebug;
void endSimultaneousInjection(InjectionEvent *event) {
endSimultaneousInjectionOnlyTogglePins();
event->update();
}
static InjectionEvent* argToEvent(uintptr_t arg) {
return reinterpret_cast<InjectionEvent*>(arg & ~(1UL));
}
void turnInjectionPinLow(uintptr_t arg) {
auto event = argToEvent(arg);
efitick_t nowNt = getTimeNowNt();
for (size_t i = 0; i < efi::size(event->outputs); i++) {
InjectorOutputPin *output = event->outputs[i];
if (output) {
output->close(nowNt);
}
}
efitick_t nextSplitDuration = event->splitInjectionDuration;
if (nextSplitDuration > 0) {
event->splitInjectionDuration = 0;
efitick_t openTime = getTimeNowNt() + MS2NT(2);
efitick_t closeTime = openTime + nextSplitDuration;
getExecutorInterface()->scheduleByTimestampNt("inj", nullptr, openTime, { &turnInjectionPinHigh, arg });
getExecutorInterface()->scheduleByTimestampNt("inj", nullptr, closeTime, { turnInjectionPinLow, arg });
} else {
event->update();
}
}
static void turnInjectionPinLowStage2(InjectionEvent* event) {
efitick_t nowNt = getTimeNowNt();
for (size_t i = 0; i < efi::size(event->outputsStage2); i++) {
InjectorOutputPin *output = event->outputsStage2[i];
if (output) {
output->close(nowNt);
}
}
}
void turnInjectionPinHigh(uintptr_t arg) {
efitick_t nowNt = getTimeNowNt();
// clear last bit to recover the pointer
InjectionEvent* event = argToEvent(arg);
// extract last bit
bool stage2Active = arg & 1;
for (size_t i = 0; i < efi::size(event->outputs); i++) {
InjectorOutputPin *output = event->outputs[i];
if (output) {
output->open(nowNt);
}
}
if (stage2Active) {
for (size_t i = 0; i < efi::size(event->outputsStage2); i++) {
InjectorOutputPin *output = event->outputsStage2[i];
if (output) {
output->open(nowNt);
}
}
}
}
void InjectionEvent::onTriggerTooth(efitick_t nowNt, float currentPhase, float nextPhase) {
auto eventAngle = injectionStartAngle;
// Determine whether our angle is going to happen before (or near) the next tooth
if (!isPhaseInRange(eventAngle, currentPhase, nextPhase)) {
return;
}
// don't allow split inj in simultaneous mode
// TODO: #364 implement logic to actually enable split injections
bool doSplitInjection = false && !isSimultaneous;
// Select fuel mass from the correct cylinder
auto injectionMassGrams = getEngineState()->injectionMass[this->cylinderNumber];
// Perform wall wetting adjustment on fuel mass, not duration, so that
// it's correct during fuel pressure (injector flow) or battery voltage (deadtime) transients
// TODO: is it correct to wall wet on both pulses?
injectionMassGrams = wallFuel.adjust(injectionMassGrams);
// Disable staging in simultaneous mode or split injection mode
float stage2Fraction = (isSimultaneous || doSplitInjection) ? 0 : getEngineState()->injectionStage2Fraction;
// Compute fraction of fuel on stage 2, remainder goes on stage 1
const float injectionMassStage2 = stage2Fraction * injectionMassGrams;
float injectionMassStage1 = injectionMassGrams - injectionMassStage2;
{
// Log this fuel as consumed
bool isCranking = getEngineRotationState()->isCranking();
int numberOfInjections = isCranking ? getNumberOfInjections(engineConfiguration->crankingInjectionMode) : getNumberOfInjections(engineConfiguration->injectionMode);
float actualInjectedMass = numberOfInjections * (injectionMassStage1 + injectionMassStage2);
engine->module<TripOdometer>()->consumeFuel(actualInjectedMass, nowNt);
}
if (doSplitInjection) {
// If in split mode, do the injection in two halves
injectionMassStage1 = injectionMassStage1 / 2;
}
const floatms_t injectionDurationStage1 = engine->module<InjectorModelPrimary>()->getInjectionDuration(injectionMassStage1);
const floatms_t injectionDurationStage2 = injectionMassStage2 > 0 ? engine->module<InjectorModelSecondary>()->getInjectionDuration(injectionMassStage2) : 0;
#if EFI_PRINTF_FUEL_DETAILS
if (printFuelDebug) {
printf("fuel injectionDuration=%.2fms adjusted=%.2fms\n",
getEngineState()->injectionDuration,
injectionDurationStage1);
}
#endif /*EFI_PRINTF_FUEL_DETAILS */
if (this->cylinderNumber == 0) {
engine->outputChannels.actualLastInjection = injectionDurationStage1;
engine->outputChannels.actualLastInjectionStage2 = injectionDurationStage2;
}
if (cisnan(injectionDurationStage1) || cisnan(injectionDurationStage2)) {
warning(ObdCode::CUSTOM_OBD_NAN_INJECTION, "NaN injection pulse");
return;
}
if (injectionDurationStage1 < 0) {
warning(ObdCode::CUSTOM_OBD_NEG_INJECTION, "Negative injection pulse %.2f", injectionDurationStage1);
return;
}
// If somebody commanded an impossibly short injection, do nothing.
// Durations under 50us-ish aren't safe for the scheduler
// as their order may be swapped, resulting in a stuck open injector
// see https://github.com/rusefi/rusefi/pull/596 for more details
if (injectionDurationStage1 < 0.050f)
{
return;
}
floatus_t durationUsStage1 = MS2US(injectionDurationStage1);
floatus_t durationUsStage2 = MS2US(injectionDurationStage2);
// Only bother with the second stage if it's long enough to be relevant
bool hasStage2Injection = durationUsStage2 > 50;
#if EFI_PRINTF_FUEL_DETAILS
if (printFuelDebug) {
InjectorOutputPin *output = outputs[0];
printf("handleFuelInjectionEvent fuelout %s injection_duration %dus engineCycleDuration=%.1fms\t\n", output->getName(), (int)durationUsStage1,
(int)MS2US(getCrankshaftRevolutionTimeMs(Sensor::getOrZero(SensorType::Rpm))) / 1000.0);
}
#endif /*EFI_PRINTF_FUEL_DETAILS */
action_s startAction, endActionStage1, endActionStage2;
// We use different callbacks based on whether we're running sequential mode or not - everything else is the same
if (isSimultaneous) {
startAction = startSimultaneousInjection;
endActionStage1 = { &endSimultaneousInjection, this };
} else {
uintptr_t startActionPtr = reinterpret_cast<uintptr_t>(this);
if (hasStage2Injection) {
// Set the low bit in the arg if there's a secondary injection to start too
startActionPtr |= 1;
}
// sequential or batch
startAction = { &turnInjectionPinHigh, startActionPtr };
endActionStage1 = { &turnInjectionPinLow, startActionPtr };
endActionStage2 = { &turnInjectionPinLowStage2, this };
}
// Correctly wrap injection start angle
float angleFromNow = eventAngle - currentPhase;
if (angleFromNow < 0) {
angleFromNow += getEngineState()->engineCycle;
}
// Schedule opening (stage 1 + stage 2 open together)
efitick_t startTime = scheduleByAngle(nullptr, nowNt, angleFromNow, startAction);
// Schedule closing stage 1
efitick_t durationStage1Nt = US2NT((int)durationUsStage1);
efitick_t turnOffTimeStage1 = startTime + durationStage1Nt;
if (doSplitInjection) {
this->splitInjectionDuration = durationStage1Nt;
} else {
this->splitInjectionDuration = 0;
}
getExecutorInterface()->scheduleByTimestampNt("inj", nullptr, turnOffTimeStage1, endActionStage1);
// Schedule closing stage 2 (if applicable)
if (hasStage2Injection && endActionStage2) {
efitick_t turnOffTimeStage2 = startTime + US2NT((int)durationUsStage2);
getExecutorInterface()->scheduleByTimestampNt("inj stage 2", nullptr, turnOffTimeStage2, endActionStage2);
}
#if EFI_UNIT_TEST
printf("scheduling injection angle=%.2f/delay=%d injectionDuration=%d %d\r\n", angleFromNow, (int)NT2US(startTime - nowNt), (int)durationUsStage1, (int)durationUsStage2);
#endif
#if EFI_DEFAILED_LOGGING
efiPrintf("handleFuel pin=%s eventIndex %d duration=%.2fms %d", outputs[0]->name,
injEventIndex,
injectionDurationStage1,
getRevolutionCounter());
efiPrintf("handleFuel pin=%s delay=%.2f %d", outputs[0]->name, NT2US(startTime - nowNt),
getRevolutionCounter());
#endif /* EFI_DEFAILED_LOGGING */
}
FuelSchedule::FuelSchedule() {
for (int cylinderIndex = 0; cylinderIndex < MAX_CYLINDER_COUNT; cylinderIndex++) {
elements[cylinderIndex].setIndex(cylinderIndex);
}
}
WallFuel& InjectionEvent::getWallFuel() {
return wallFuel;
}
void FuelSchedule::invalidate() {
isReady = false;
}
void FuelSchedule::resetOverlapping() {
for (size_t i = 0; i < efi::size(enginePins.injectors); i++) {
enginePins.injectors[i].reset();
}
}
// Determines how much to adjust injection opening angle based on the injection's duration and the current phasing mode
static float getInjectionAngleCorrection(float fuelMs, float oneDegreeUs) {
auto mode = engineConfiguration->injectionTimingMode;
if (mode == InjectionTimingMode::Start) {
// Start of injection gets no correction for duration
return 0;
}
efiAssert(ObdCode::CUSTOM_ERR_ASSERT, !cisnan(fuelMs), "NaN fuelMs", false);
angle_t injectionDurationAngle = MS2US(fuelMs) / oneDegreeUs;
efiAssert(ObdCode::CUSTOM_ERR_ASSERT, !cisnan(injectionDurationAngle), "NaN injectionDurationAngle", false);
assertAngleRange(injectionDurationAngle, "injectionDuration_r", ObdCode::CUSTOM_INJ_DURATION);
if (mode == InjectionTimingMode::Center) {
// Center of injection is half-corrected for duration
return injectionDurationAngle * 0.5f;
} else {
// End of injection gets "full correction" so we advance opening by the full duration
return injectionDurationAngle;
}
}
InjectionEvent::InjectionEvent() {
memset(outputs, 0, sizeof(outputs));
}
// Returns the start angle of this injector in engine coordinates (0-720 for a 4 stroke),
// or unexpected if unable to calculate the start angle due to missing information.
expected<float> InjectionEvent::computeInjectionAngle() const {
floatus_t oneDegreeUs = getEngineRotationState()->getOneDegreeUs();
if (cisnan(oneDegreeUs)) {
// in order to have fuel schedule we need to have current RPM
return unexpected;
}
// injection phase may be scheduled by injection end, so we need to step the angle back
// for the duration of the injection
angle_t injectionDurationAngle = getInjectionAngleCorrection(getEngineState()->injectionDuration, oneDegreeUs);
// User configured offset - degrees after TDC combustion
floatus_t injectionOffset = getEngineState()->injectionOffset;
if (cisnan(injectionOffset)) {
// injection offset map not ready - we are not ready to schedule fuel events
return unexpected;
}
angle_t openingAngle = injectionOffset - injectionDurationAngle;
assertAngleRange(openingAngle, "openingAngle_r", ObdCode::CUSTOM_ERR_6554);
wrapAngle(openingAngle, "addFuel#1", ObdCode::CUSTOM_ERR_6555);
// TODO: should we log per-cylinder injection timing? #76
getTunerStudioOutputChannels()->injectionOffset = openingAngle;
// Convert from cylinder-relative to cylinder-1-relative
openingAngle += getCylinderAngle(ownIndex, cylinderNumber);
efiAssert(ObdCode::CUSTOM_ERR_ASSERT, !cisnan(openingAngle), "findAngle#3", false);
assertAngleRange(openingAngle, "findAngle#a33", ObdCode::CUSTOM_ERR_6544);
wrapAngle(openingAngle, "addFuel#2", ObdCode::CUSTOM_ERR_6555);
#if EFI_UNIT_TEST
printf("registerInjectionEvent openingAngle=%.2f inj %d\r\n", openingAngle, cylinderNumber);
#endif
return openingAngle;
}
bool InjectionEvent::updateInjectionAngle() {
auto result = computeInjectionAngle();
if (result) {
// If injector duty cycle is high, lock injection SOI so that we
// don't miss injections at or above 100% duty
if (getEngineState()->shouldUpdateInjectionTiming) {
injectionStartAngle = result.Value;
}
return true;
} else {
return false;
}
}
/**
* @returns false in case of error, true if success
*/
bool InjectionEvent::update() {
bool updatedAngle = updateInjectionAngle();
if (!updatedAngle) {
return false;
}
injection_mode_e mode = getCurrentInjectionMode();
engine->outputChannels.currentInjectionMode = static_cast<uint8_t>(mode);
// Map order index -> cylinder index (firing order)
// Single point only uses injector 1 (index 0)
int injectorIndex = mode == IM_SINGLE_POINT ? 0 : ID2INDEX(getCylinderId(ownIndex));
InjectorOutputPin* secondOutput = nullptr;
InjectorOutputPin* secondOutputStage2 = nullptr;
if (mode == IM_BATCH) {
/**
* also fire the 2nd half of the injectors so that we can implement a batch mode on individual wires
*/
// Compute the position of this cylinder's twin in the firing order
// Each injector gets fired as a primary (the same as sequential), but also
// fires the injector 360 degrees later in the firing order.
int secondOrder = (ownIndex + (engineConfiguration->cylindersCount / 2)) % engineConfiguration->cylindersCount;
int secondIndex = ID2INDEX(getCylinderId(secondOrder));
secondOutput = &enginePins.injectors[secondIndex];
secondOutputStage2 = &enginePins.injectorsStage2[secondIndex];
}
outputs[0] = &enginePins.injectors[injectorIndex];
outputs[1] = secondOutput;
isSimultaneous = mode == IM_SIMULTANEOUS;
// Stash the cylinder number so we can select the correct fueling bank later
cylinderNumber = injectorIndex;
outputsStage2[0] = &enginePins.injectorsStage2[injectorIndex];
outputsStage2[1] = secondOutputStage2;
return true;
}
void FuelSchedule::addFuelEvents() {
for (size_t cylinderIndex = 0; cylinderIndex < engineConfiguration->cylindersCount; cylinderIndex++) {
bool result = elements[cylinderIndex].update();
if (!result) {
invalidate();
return;
}
}
// We made it through all cylinders, mark the schedule as ready so it can be used
isReady = true;
}
void FuelSchedule::onTriggerTooth(efitick_t nowNt, float currentPhase, float nextPhase) {
// Wait for schedule to be built - this happens the first time we get RPM
if (!isReady) {
return;
}
for (size_t i = 0; i < engineConfiguration->cylindersCount; i++) {
elements[i].onTriggerTooth(nowNt, currentPhase, nextPhase);
}
}
#endif // EFI_ENGINE_CONTROL