fome-fw/firmware/hw_layer/ports/stm32/stm32_common.cpp

738 lines
18 KiB
C++

/**
* @file stm32_common.cpp
* @brief Low level common STM32 code
*
* @date Mar 28, 2019
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "engine_ptr.h"
#include "efi_gpio.h"
#include "expected.h"
#ifdef STM32F4XX
#include "stm32f4xx_hal_flash.h"
#elif defined(STM32F7XX)
#include "stm32f7xx_hal_flash.h"
#elif defined(STM32H7XX)
#include "stm32h7xx_hal_flash.h"
#endif
#ifndef EFI_PIN_ADC9
#define EFI_PIN_ADC9 GPIOB_1
#endif /* EFI_PIN_ADC9 */
#define _2_MHZ 2'000'000
#if EFI_PROD_CODE
#include "mpu_util.h"
#include "backup_ram.h"
#endif /* EFI_PROD_CODE */
EXTERN_ENGINE;
#if HAL_USE_ADC
// ADC_CHANNEL_IN0 // PA0
// ADC_CHANNEL_IN1 // PA1
// ADC_CHANNEL_IN2 // PA2
// ADC_CHANNEL_IN3 // PA3
// ADC_CHANNEL_IN4 // PA4
// ADC_CHANNEL_IN5 // PA5 - this is also TIM2_CH1
// ADC_CHANNEL_IN6 // PA6
// ADC_CHANNEL_IN7 // PA7
// ADC_CHANNEL_IN8 // PB0
// ADC_CHANNEL_IN9 // PB1
// ADC_CHANNEL_IN10 // PC0
// ADC_CHANNEL_IN11 // PC1
// ADC_CHANNEL_IN12 // PC2
// ADC_CHANNEL_IN13 // PC3
// ADC_CHANNEL_IN14 // PC4
// ADC_CHANNEL_IN15 // PC5
brain_pin_e getAdcChannelBrainPin(const char *msg, adc_channel_e hwChannel) {
static_assert(EFI_ADC_NONE == ADC_CHANNEL_NONE);
// todo: replace this with an array :)
switch (hwChannel) {
case EFI_ADC_0:
return GPIOA_0;
case EFI_ADC_1:
return GPIOA_1;
case EFI_ADC_2:
return GPIOA_2;
case EFI_ADC_3:
return GPIOA_3;
case EFI_ADC_4:
return GPIOA_4;
case EFI_ADC_5:
return GPIOA_5;
case EFI_ADC_6:
return GPIOA_6;
case EFI_ADC_7:
return GPIOA_7;
case EFI_ADC_8:
return GPIOB_0;
case EFI_ADC_9:
return EFI_PIN_ADC9;
case EFI_ADC_10:
return GPIOC_0;
case EFI_ADC_11:
return GPIOC_1;
case EFI_ADC_12:
return GPIOC_2;
case EFI_ADC_13:
return GPIOC_3;
case EFI_ADC_14:
return GPIOC_4;
case EFI_ADC_15:
return GPIOC_5;
default:
firmwareError(CUSTOM_ERR_ADC_UNKNOWN_CHANNEL, "Unknown hw channel %d [%s]", hwChannel, msg);
return GPIO_INVALID;
}
}
adc_channel_e getAdcChannel(brain_pin_e pin) {
switch (pin) {
case GPIOA_0:
return EFI_ADC_0;
case GPIOA_1:
return EFI_ADC_1;
case GPIOA_2:
return EFI_ADC_2;
case GPIOA_3:
return EFI_ADC_3;
case GPIOA_4:
return EFI_ADC_4;
case GPIOA_5:
return EFI_ADC_5;
case GPIOA_6:
return EFI_ADC_6;
case GPIOA_7:
return EFI_ADC_7;
case GPIOB_0:
return EFI_ADC_8;
case EFI_PIN_ADC9:
return EFI_ADC_9;
case GPIOC_0:
return EFI_ADC_10;
case GPIOC_1:
return EFI_ADC_11;
case GPIOC_2:
return EFI_ADC_12;
case GPIOC_3:
return EFI_ADC_13;
case GPIOC_4:
return EFI_ADC_14;
case GPIOC_5:
return EFI_ADC_15;
case GPIO_UNASSIGNED:
return EFI_ADC_NONE;
default:
firmwareError(OBD_PCM_Processor_Fault, "getAdcChannel %d", pin);
return EFI_ADC_ERROR;
}
}
// deprecated - inline?
ioportid_t getAdcChannelPort(const char *msg, adc_channel_e hwChannel) {
brain_pin_e brainPin = getAdcChannelBrainPin(msg, hwChannel);
return getHwPort(msg, brainPin);
}
// deprecated - inline?
int getAdcChannelPin(adc_channel_e hwChannel) {
brain_pin_e brainPin = getAdcChannelBrainPin("get_pin", hwChannel);
return getHwPin("get_pin", brainPin);
}
#endif /* HAL_USE_ADC */
#if EFI_PROD_CODE
#if HAL_USE_PWM
namespace {
struct stm32_pwm_config {
PWMDriver* const Driver;
const uint8_t Channel;
const uint8_t AlternateFunc;
};
class stm32_hardware_pwm : public hardware_pwm {
public:
bool hasInit() const {
return m_driver != nullptr;
}
// 2MHz, 16-bit timer gets us a usable frequency range of 31hz to 10khz
static constexpr uint32_t c_timerFrequency = _2_MHZ;
void start(const char* msg, const stm32_pwm_config& config, float frequency, float duty) {
m_driver = config.Driver;
m_channel = config.Channel;
m_period = c_timerFrequency / frequency;
// These timers are only 16 bit - don't risk overflow
if (m_period > 0xFFF0) {
firmwareError(CUSTOM_OBD_LOW_FREQUENCY, "PWM Frequency too low %f hz on pin \"%s\"", frequency, msg);
return;
}
// If we have too few usable bits, we run out of resolution, so don't allow that either.
// 200 counts = 0.5% resolution
if (m_period < _2_MHZ / ETB_HW_MAX_FREQUENCY) {
firmwareError(CUSTOM_OBD_HIGH_FREQUENCY, "PWM Frequency too high %d limit %d hz on pin \"%s\"", frequency,
ETB_HW_MAX_FREQUENCY,
msg);
return;
}
const PWMConfig pwmcfg = {
c_timerFrequency,
m_period,
nullptr,
{
{PWM_OUTPUT_ACTIVE_HIGH, nullptr},
{PWM_OUTPUT_ACTIVE_HIGH, nullptr},
{PWM_OUTPUT_ACTIVE_HIGH, nullptr},
{PWM_OUTPUT_ACTIVE_HIGH, nullptr}
},
0,
0
};
// Start the timer running
pwmStart(m_driver, &pwmcfg);
// Set initial duty cycle
setDuty(duty);
}
void setDuty(float duty) override {
if (!m_driver) {
firmwareError(OBD_PCM_Processor_Fault, "Attempted to set duty on null hard PWM device");
return;
}
pwm_lld_enable_channel(m_driver, m_channel, getHighTime(duty));
}
private:
PWMDriver* m_driver = nullptr;
uint8_t m_channel = 0;
uint32_t m_period = 0;
pwmcnt_t getHighTime(float duty) const {
return m_period * duty;
}
};
}
static expected<stm32_pwm_config> getConfigForPin(brain_pin_e pin) {
switch (pin) {
#if STM32_PWM_USE_TIM1
case GPIOA_8: return stm32_pwm_config{&PWMD1, 0, 1};
case GPIOA_9: return stm32_pwm_config{&PWMD1, 1, 1};
case GPIOA_10: return stm32_pwm_config{&PWMD1, 2, 1};
case GPIOA_11: return stm32_pwm_config{&PWMD1, 3, 1};
case GPIOE_9: return stm32_pwm_config{&PWMD1, 0, 1};
case GPIOE_11: return stm32_pwm_config{&PWMD1, 1, 1};
case GPIOE_13: return stm32_pwm_config{&PWMD1, 2, 1};
case GPIOE_14: return stm32_pwm_config{&PWMD1, 3, 1};
#endif
#if STM32_PWM_USE_TIM2
case GPIOA_15: return stm32_pwm_config{&PWMD2, 0, 1};
case GPIOB_3: return stm32_pwm_config{&PWMD2, 1, 1};
case GPIOB_10: return stm32_pwm_config{&PWMD2, 2, 1};
case GPIOB_11: return stm32_pwm_config{&PWMD2, 3, 1};
#endif
#if STM32_PWM_USE_TIM3
case GPIOB_4: return stm32_pwm_config{&PWMD3, 0, 2};
case GPIOB_5: return stm32_pwm_config{&PWMD3, 1, 2};
#endif
#if STM32_PWM_USE_TIM4
case GPIOB_6: return stm32_pwm_config{&PWMD4, 0, 2};
case GPIOB_7: return stm32_pwm_config{&PWMD4, 1, 2};
case GPIOB_8: return stm32_pwm_config{&PWMD4, 2, 2};
case GPIOB_9: return stm32_pwm_config{&PWMD4, 3, 2};
case GPIOD_12: return stm32_pwm_config{&PWMD4, 0, 2};
case GPIOD_13: return stm32_pwm_config{&PWMD4, 1, 2};
case GPIOD_14: return stm32_pwm_config{&PWMD4, 2, 2};
case GPIOD_15: return stm32_pwm_config{&PWMD4, 3, 2};
#endif
#if STM32_PWM_USE_TIM8
case GPIOC_6: return stm32_pwm_config{&PWMD8, 0, 3};
case GPIOC_7: return stm32_pwm_config{&PWMD8, 1, 3};
case GPIOC_8: return stm32_pwm_config{&PWMD8, 2, 3};
case GPIOC_9: return stm32_pwm_config{&PWMD8, 3, 3};
#endif
default: return unexpected;
}
};
stm32_hardware_pwm pwms[5];
stm32_hardware_pwm* getNextPwmDevice() {
for (size_t i = 0; i < efi::size(pwms); i++) {
if (!pwms[i].hasInit()) {
return &pwms[i];
}
}
firmwareError(OBD_PCM_Processor_Fault, "Run out of hardware PWM devices!");
return nullptr;
}
/*static*/ hardware_pwm* hardware_pwm::tryInitPin(const char* msg, brain_pin_e pin, float frequencyHz, float duty) {
// Hardware PWM can't do very slow PWM - the timer counter is only 16 bits, so at 2MHz counting, that's a minimum of 31hz.
if (frequencyHz < 50) {
return nullptr;
}
auto cfg = getConfigForPin(pin);
// This pin can't do hardware PWM
if (!cfg) {
return nullptr;
}
if (stm32_hardware_pwm* device = getNextPwmDevice()) {
device->start(msg, cfg.Value, frequencyHz, duty);
// Finally connect the timer to physical pin
efiSetPadMode(msg, pin, PAL_MODE_ALTERNATE(cfg.Value.AlternateFunc));
return device;
}
return nullptr;
}
#endif
void jump_to_bootloader() {
// leave DFU breadcrumb which assmebly startup code would check, see [rusefi][DFU] section in assembly code
*((unsigned long *)0x2001FFF0) = 0xDEADBEEF; // End of RAM
// and now reboot
NVIC_SystemReset();
}
#endif /* EFI_PROD_CODE */
#if EFI_AUX_SERIAL
static bool isValidUART6TxPin(brain_pin_e pin) {
return pin == GPIOC_6 || pin == GPIOG_14;
}
static bool isValidUART6RxPin(brain_pin_e pin) {
return pin == GPIOC_7 || pin == GPIOG_9;
}
bool isValidSerialTxPin(brain_pin_e pin) {
return isValidUART6TxPin(pin);
}
bool isValidSerialRxPin(brain_pin_e pin) {
return isValidUART6RxPin(pin);
}
#endif /*EFI_AUX_SERIAL*/
#if EFI_PROD_CODE
BOR_Level_t BOR_Get(void) {
FLASH_OBProgramInitTypeDef FLASH_Handle;
/* Read option bytes */
HAL_FLASHEx_OBGetConfig(&FLASH_Handle);
/* Return BOR value */
return (BOR_Level_t) FLASH_Handle.BORLevel;
}
BOR_Result_t BOR_Set(BOR_Level_t BORValue) {
if (BOR_Get() == BORValue) {
return BOR_Result_Ok;
}
FLASH_OBProgramInitTypeDef FLASH_Handle;
FLASH_Handle.BORLevel = (uint32_t)BORValue;
FLASH_Handle.OptionType = OPTIONBYTE_BOR;
HAL_FLASH_OB_Unlock();
HAL_FLASHEx_OBProgram(&FLASH_Handle);
HAL_StatusTypeDef status = HAL_FLASH_OB_Launch();
HAL_FLASH_OB_Lock();
if (status != HAL_OK) {
return BOR_Result_Error;
}
return BOR_Result_Ok;
}
void baseMCUInit(void) {
// looks like this holds a random value on start? Let's set a nice clean zero
DWT->CYCCNT = 0;
BOR_Set(BOR_Level_1); // one step above default value
}
extern "C" {
void prvGetRegistersFromStack(uint32_t *pulFaultStackAddress);
}
extern uint32_t __main_stack_base__;
#define GET_CFSR() (*((volatile uint32_t *) (0xE000ED28)))
typedef struct port_intctx intctx_t;
EXTERNC int getRemainingStack(thread_t *otp) {
#if CH_DBG_ENABLE_STACK_CHECK
// this would dismiss coverity warning - see http://rusefi.com/forum/viewtopic.php?f=5&t=655
// coverity[uninit_use]
register intctx_t *r13 asm ("r13");
otp->activeStack = r13;
int remainingStack;
if (ch.dbg.isr_cnt > 0) {
// ISR context
remainingStack = (int)(r13 - 1) - (int)&__main_stack_base__;
} else {
remainingStack = (int)(r13 - 1) - (int)otp->wabase;
}
otp->remainingStack = remainingStack;
return remainingStack;
#else
UNUSED(otp);
return 99999;
#endif /* CH_DBG_ENABLE_STACK_CHECK */
}
void _unhandled_exception(void) {
/*lint -restore*/
chDbgPanic3("_unhandled_exception", __FILE__, __LINE__);
while (true) {
}
}
void DebugMonitorVector(void) {
chDbgPanic3("DebugMonitorVector", __FILE__, __LINE__);
while (TRUE)
;
}
void UsageFaultVector(void) {
chDbgPanic3("UsageFaultVector", __FILE__, __LINE__);
while (TRUE)
;
}
void BusFaultVector(void) {
chDbgPanic3("BusFaultVector", __FILE__, __LINE__);
while (TRUE) {
}
}
/**
+ * @brief Register values for postmortem debugging.
+ */
volatile uint32_t postmortem_r0;
volatile uint32_t postmortem_r1;
volatile uint32_t postmortem_r2;
volatile uint32_t postmortem_r3;
volatile uint32_t postmortem_r12;
volatile uint32_t postmortem_lr; /* Link register. */
volatile uint32_t postmortem_pc; /* Program counter. */
volatile uint32_t postmortem_psr;/* Program status register. */
volatile uint32_t postmortem_CFSR;
volatile uint32_t postmortem_HFSR;
volatile uint32_t postmortem_DFSR;
volatile uint32_t postmortem_AFSR;
volatile uint32_t postmortem_BFAR;
volatile uint32_t postmortem_MMAR;
volatile uint32_t postmortem_SCB_SHCSR;
/**
* @brief Evaluates to TRUE if system runs under debugger control.
* @note This bit resets only by power reset.
*/
#define is_under_debugger() (((CoreDebug)->DHCSR) & \
CoreDebug_DHCSR_C_DEBUGEN_Msk)
/**
*
*/
void prvGetRegistersFromStack(uint32_t *pulFaultStackAddress) {
postmortem_r0 = pulFaultStackAddress[0];
postmortem_r1 = pulFaultStackAddress[1];
postmortem_r2 = pulFaultStackAddress[2];
postmortem_r3 = pulFaultStackAddress[3];
postmortem_r12 = pulFaultStackAddress[4];
postmortem_lr = pulFaultStackAddress[5];
postmortem_pc = pulFaultStackAddress[6];
postmortem_psr = pulFaultStackAddress[7];
/* Configurable Fault Status Register. Consists of MMSR, BFSR and UFSR */
postmortem_CFSR = GET_CFSR();
/* Hard Fault Status Register */
postmortem_HFSR = (*((volatile uint32_t *) (0xE000ED2C)));
/* Debug Fault Status Register */
postmortem_DFSR = (*((volatile uint32_t *) (0xE000ED30)));
/* Auxiliary Fault Status Register */
postmortem_AFSR = (*((volatile uint32_t *) (0xE000ED3C)));
/* Read the Fault Address Registers. These may not contain valid values.
Check BFARVALID/MMARVALID to see if they are valid values
MemManage Fault Address Register */
postmortem_MMAR = (*((volatile uint32_t *) (0xE000ED34)));
/* Bus Fault Address Register */
postmortem_BFAR = (*((volatile uint32_t *) (0xE000ED38)));
postmortem_SCB_SHCSR = SCB->SHCSR;
if (is_under_debugger()) {
__asm("BKPT #0\n");
// Break into the debugger
}
/* harmless infinite loop */
while (1) {
;
}
}
void HardFaultVector(void) {
#if 0 && defined __GNUC__
__asm volatile (
" tst lr, #4 \n"
" ite eq \n"
" mrseq r0, msp \n"
" mrsne r0, psp \n"
" ldr r1, [r0, #24] \n"
" ldr r2, handler2_address_const \n"
" bx r2 \n"
" handler2_address_const: .word prvGetRegistersFromStack \n"
);
#else
#endif /* 0 && defined __GNUC__ */
int cfsr = GET_CFSR();
if (cfsr & 0x1) {
chDbgPanic3("H IACCVIOL", __FILE__, __LINE__);
} else if (cfsr & 0x100) {
chDbgPanic3("H IBUSERR", __FILE__, __LINE__);
} else if (cfsr & 0x20000) {
chDbgPanic3("H INVSTATE", __FILE__, __LINE__);
} else {
chDbgPanic3("HardFaultVector", __FILE__, __LINE__);
}
while (TRUE) {
}
}
#if HAL_USE_SPI
bool isSpiInitialized[5] = { false, false, false, false, false };
static int getSpiAf(SPIDriver *driver) {
#if STM32_SPI_USE_SPI1
if (driver == &SPID1) {
return EFI_SPI1_AF;
}
#endif
#if STM32_SPI_USE_SPI2
if (driver == &SPID2) {
return EFI_SPI2_AF;
}
#endif
#if STM32_SPI_USE_SPI3
if (driver == &SPID3) {
return EFI_SPI3_AF;
}
#endif
return -1;
}
brain_pin_e getMisoPin(spi_device_e device) {
switch(device) {
case SPI_DEVICE_1:
return CONFIG(spi1misoPin);
case SPI_DEVICE_2:
return CONFIG(spi2misoPin);
case SPI_DEVICE_3:
return CONFIG(spi3misoPin);
default:
break;
}
return GPIO_UNASSIGNED;
}
brain_pin_e getMosiPin(spi_device_e device) {
switch(device) {
case SPI_DEVICE_1:
return CONFIG(spi1mosiPin);
case SPI_DEVICE_2:
return CONFIG(spi2mosiPin);
case SPI_DEVICE_3:
return CONFIG(spi3mosiPin);
default:
break;
}
return GPIO_UNASSIGNED;
}
brain_pin_e getSckPin(spi_device_e device) {
switch(device) {
case SPI_DEVICE_1:
return CONFIG(spi1sckPin);
case SPI_DEVICE_2:
return CONFIG(spi2sckPin);
case SPI_DEVICE_3:
return CONFIG(spi3sckPin);
default:
break;
}
return GPIO_UNASSIGNED;
}
void turnOnSpi(spi_device_e device) {
if (isSpiInitialized[device])
return; // already initialized
isSpiInitialized[device] = true;
if (device == SPI_DEVICE_1) {
// todo: introduce a nice structure with all fields for same SPI
#if STM32_SPI_USE_SPI1
// scheduleMsg(&logging, "Turning on SPI1 pins");
initSpiModule(&SPID1, getSckPin(device),
getMisoPin(device),
getMosiPin(device),
engineConfiguration->spi1SckMode,
engineConfiguration->spi1MosiMode,
engineConfiguration->spi1MisoMode);
#endif /* STM32_SPI_USE_SPI1 */
}
if (device == SPI_DEVICE_2) {
#if STM32_SPI_USE_SPI2
// scheduleMsg(&logging, "Turning on SPI2 pins");
initSpiModule(&SPID2, getSckPin(device),
getMisoPin(device),
getMosiPin(device),
engineConfiguration->spi2SckMode,
engineConfiguration->spi2MosiMode,
engineConfiguration->spi2MisoMode);
#endif /* STM32_SPI_USE_SPI2 */
}
if (device == SPI_DEVICE_3) {
#if STM32_SPI_USE_SPI3
// scheduleMsg(&logging, "Turning on SPI3 pins");
initSpiModule(&SPID3, getSckPin(device),
getMisoPin(device),
getMosiPin(device),
engineConfiguration->spi3SckMode,
engineConfiguration->spi3MosiMode,
engineConfiguration->spi3MisoMode);
#endif /* STM32_SPI_USE_SPI3 */
}
if (device == SPI_DEVICE_4) {
#if STM32_SPI_USE_SPI4
// scheduleMsg(&logging, "Turning on SPI4 pins");
/* there is no cofiguration fields for SPI4 in engineConfiguration, rely on board init code
* it should set proper functions for SPI4 pins */
#endif /* STM32_SPI_USE_SPI4 */
}
}
void initSpiModule(SPIDriver *driver, brain_pin_e sck, brain_pin_e miso,
brain_pin_e mosi,
int sckMode,
int mosiMode,
int misoMode) {
/**
* See https://github.com/rusefi/rusefi/pull/664/
*
* Info on the silicon defect can be found in this document, section 2.5.2:
* https://www.st.com/content/ccc/resource/technical/document/errata_sheet/0a/98/58/84/86/b6/47/a2/DM00037591.pdf/files/DM00037591.pdf/jcr:content/translations/en.DM00037591.pdf
*/
efiSetPadMode("SPI clock", sck, PAL_MODE_ALTERNATE(getSpiAf(driver)) | sckMode | PAL_STM32_OSPEED_HIGHEST);
efiSetPadMode("SPI master out", mosi, PAL_MODE_ALTERNATE(getSpiAf(driver)) | mosiMode | PAL_STM32_OSPEED_HIGHEST);
// Activate the internal pullup on MISO: SD cards indicate "busy" by holding MOSI low,
// so in case there is no SD card installed, the line could float low and indicate that
// the (non existent) card is busy. We pull the line high to indicate "not busy" in case
// of a missing card.
efiSetPadMode("SPI master in ", miso, PAL_MODE_ALTERNATE(getSpiAf(driver)) | misoMode | PAL_STM32_OSPEED_HIGHEST | PAL_STM32_PUPDR_PULLUP);
}
void initSpiCs(SPIConfig *spiConfig, brain_pin_e csPin) {
spiConfig->end_cb = nullptr;
ioportid_t port = getHwPort("spi", csPin);
ioportmask_t pin = getHwPin("spi", csPin);
spiConfig->ssport = port;
spiConfig->sspad = pin;
efiSetPadMode("chip select", csPin, PAL_STM32_MODE_OUTPUT);
}
#endif /* HAL_USE_SPI */
#if EFI_CAN_SUPPORT
static bool isValidCan1RxPin(brain_pin_e pin) {
return pin == GPIOA_11 || pin == GPIOB_8 || pin == GPIOD_0;
}
static bool isValidCan1TxPin(brain_pin_e pin) {
return pin == GPIOA_12 || pin == GPIOB_9 || pin == GPIOD_1;
}
static bool isValidCan2RxPin(brain_pin_e pin) {
return pin == GPIOB_5 || pin == GPIOB_12;
}
static bool isValidCan2TxPin(brain_pin_e pin) {
return pin == GPIOB_6 || pin == GPIOB_13;
}
bool isValidCanTxPin(brain_pin_e pin) {
return isValidCan1TxPin(pin) || isValidCan2TxPin(pin);
}
bool isValidCanRxPin(brain_pin_e pin) {
return isValidCan1RxPin(pin) || isValidCan2RxPin(pin);
}
CANDriver * detectCanDevice(brain_pin_e pinRx, brain_pin_e pinTx) {
#if STM32_CAN_USE_CAN1
if (isValidCan1RxPin(pinRx) && isValidCan1TxPin(pinTx))
return &CAND1;
#endif
#if STM32_CAN_USE_CAN2
if (isValidCan2RxPin(pinRx) && isValidCan2TxPin(pinTx))
return &CAND2;
#endif
return NULL;
}
#endif /* EFI_CAN_SUPPORT */
#endif // EFI_PROD_CODE