fome-fw/firmware/controllers/generated/engine_configuration_genera...

2872 lines
86 KiB
C

#pragma once
#include "rusefi_types.h"
struct stft_cell_cfg_s {
// %
// offset 0
int8_t maxAdd;
// %
// offset 1
int8_t maxRemove;
// Time constant for correction while in this cell: this sets responsiveness of the closed loop correction. A value of 5.0 means it will try to make most of the correction within 5 seconds, and a value of 1.0 will try to correct within 1 second.
// sec
// offset 2
scaled_channel<uint16_t, 10, 1> timeConstant;
};
static_assert(sizeof(stft_cell_cfg_s) == 4);
struct stft_s {
// Below this RPM, the idle region is active
// RPM
// offset 0
scaled_channel<uint8_t, 1, 50> maxIdleRegionRpm;
// Below this engine load, the overrun region is active
// load
// offset 1
uint8_t maxOverrunLoad;
// Above this engine load, the power region is active
// load
// offset 2
uint8_t minPowerLoad;
// When close to correct AFR, pause correction. This can improve stability by not changing the adjustment if the error is extremely small, but is not required.
// %
// offset 3
scaled_channel<uint8_t, 10, 1> deadband;
// Below this temperature, correction is disabled.
// C
// offset 4
int8_t minClt;
// Below this AFR, correction is paused
// afr
// offset 5
scaled_channel<uint8_t, 10, 1> minAfr;
// Above this AFR, correction is paused
// afr
// offset 6
scaled_channel<uint8_t, 10, 1> maxAfr;
// Delay after starting the engine before beginning closed loop correction.
// seconds
// offset 7
uint8_t startupDelay;
// offset 8
stft_cell_cfg_s cellCfgs[STFT_CELL_COUNT];
};
static_assert(sizeof(stft_s) == 24);
struct pid_s {
// offset 0
float pFactor;
// offset 4
float iFactor;
// offset 8
float dFactor;
// Linear addition to PID logic
// offset 12
int16_t offset;
// PID dTime
// ms
// offset 14
int16_t periodMs;
// Output Min Duty Cycle
// offset 16
int16_t minValue;
// Output Max Duty Cycle
// offset 18
int16_t maxValue;
};
static_assert(sizeof(pid_s) == 20);
struct cranking_parameters_s {
// Base mass of the per-cylinder fuel injected during cranking. This is then modified by the multipliers for CLT, IAT, TPS ect, to give the final cranking pulse width.
// A reasonable starting point is 60mg per liter per cylinder.
// ex: 2 liter 4 cyl = 500cc/cyl, so 30mg cranking fuel.
// mg
// offset 0
float baseFuel;
// This sets the RPM limit below which the ECU will use cranking fuel and ignition logic, typically this is around 350-450rpm.
// RPM
// offset 4
int16_t rpm;
// offset 6
uint8_t alignmentFill_at_6[2];
};
static_assert(sizeof(cranking_parameters_s) == 8);
struct gppwm_channel {
// Select a pin to use for PWM or on-off output.
// offset 0
output_pin_e pin;
// If an error (with a sensor, etc) is detected, this value is used instead of reading from the table.
// This should be a safe value for whatever hardware is connected to prevent damage.
// %
// offset 2
uint8_t dutyIfError;
// offset 3
uint8_t alignmentFill_at_3[1];
// Select a frequency to run PWM at.
// Set this to 0hz to enable on-off mode.
// hz
// offset 4
uint16_t pwmFrequency;
// Hysteresis: in on-off mode, turn the output on when the table value is above this duty.
// %
// offset 6
uint8_t onAboveDuty;
// Hysteresis: in on-off mode, turn the output off when the table value is below this duty.
// %
// offset 7
uint8_t offBelowDuty;
// Selects the Y axis to use for the table.
// offset 8
gppwm_channel_e loadAxis;
// Selects the X axis to use for the table.
// offset 9
gppwm_channel_e rpmAxis;
// load
// offset 10
scaled_channel<int16_t, 10, 1> loadBins[GPPWM_LOAD_COUNT];
// RPM
// offset 26
int16_t rpmBins[GPPWM_RPM_COUNT];
// duty
// offset 42
scaled_channel<uint8_t, 2, 1> table[GPPWM_RPM_COUNT][GPPWM_LOAD_COUNT];
// offset 106
uint8_t alignmentFill_at_106[2];
};
static_assert(sizeof(gppwm_channel) == 108);
struct air_pressure_sensor_config_s {
// kPa value at low volts
// kpa
// offset 0
float lowValue;
// kPa value at high volts
// kpa
// offset 4
float highValue;
// offset 8
air_pressure_sensor_type_e type;
// offset 9
adc_channel_e hwChannel;
// offset 10
uint8_t alignmentFill_at_10[2];
};
static_assert(sizeof(air_pressure_sensor_config_s) == 12);
struct MAP_sensor_config_s {
// offset 0
float samplingAngleBins[MAP_ANGLE_SIZE];
// MAP averaging sampling start crank degree angle
// deg
// offset 32
float samplingAngle[MAP_ANGLE_SIZE];
// offset 64
float samplingWindowBins[MAP_WINDOW_SIZE];
// MAP averaging angle crank degree duration
// deg
// offset 96
float samplingWindow[MAP_WINDOW_SIZE];
// offset 128
air_pressure_sensor_config_s sensor;
};
static_assert(sizeof(MAP_sensor_config_s) == 140);
struct thermistor_conf_s {
// these values are in Celcius
// *C
// offset 0
scaled_channel<int, 100, 1> tempC_1;
// *C
// offset 4
scaled_channel<int, 100, 1> tempC_2;
// *C
// offset 8
scaled_channel<int, 100, 1> tempC_3;
// Ohm
// offset 12
scaled_channel<uint32_t, 100, 1> resistance_1;
// Ohm
// offset 16
scaled_channel<uint32_t, 100, 1> resistance_2;
// Ohm
// offset 20
scaled_channel<uint32_t, 100, 1> resistance_3;
// Pull-up resistor value on your board
// Ohm
// offset 24
scaled_channel<uint32_t, 10, 1> bias_resistor;
};
static_assert(sizeof(thermistor_conf_s) == 28);
struct linear_sensor_s {
// offset 0
adc_channel_e hwChannel;
// offset 1
uint8_t alignmentFill_at_1[3];
// volts
// offset 4
float v1;
// kPa
// offset 8
float value1;
// volts
// offset 12
float v2;
// kPa
// offset 16
float value2;
};
static_assert(sizeof(linear_sensor_s) == 20);
struct ThermistorConf {
// offset 0
thermistor_conf_s config;
// offset 28
adc_channel_e adcChannel;
// offset 29
uint8_t alignmentFill_at_29[3];
};
static_assert(sizeof(ThermistorConf) == 32);
struct injector_s {
// This is your injector flow at the fuel pressure used in the vehicle. cc/min, cubic centimetre per minute
// By the way, g/s = 0.125997881 * (lb/hr)
// g/s = 0.125997881 * (cc/min)/10.5
// g/s = 0.0119997981 * cc/min
// cm3/min
// offset 0
float flow;
// volts
// offset 4
scaled_channel<uint16_t, 100, 1> battLagCorrBins[VBAT_INJECTOR_CURVE_SIZE];
// ms delay between injector open and close dead times
// ms
// offset 20
scaled_channel<uint16_t, 100, 1> battLagCorr[VBAT_INJECTOR_CURVE_SIZE];
};
static_assert(sizeof(injector_s) == 36);
struct trigger_config_s {
// https://github.com/rusefi/rusefi/wiki/All-Supported-Triggers
// offset 0
trigger_type_e type;
// number
// offset 4
int customTotalToothCount;
// number
// offset 8
int customSkippedToothCount;
};
static_assert(sizeof(trigger_config_s) == 12);
struct afr_sensor_s {
// offset 0
adc_channel_e hwChannel;
// offset 1
adc_channel_e hwChannel2;
// volts
// offset 2
scaled_channel<uint16_t, 1000, 1> v1;
// AFR
// offset 4
scaled_channel<uint16_t, 1000, 1> value1;
// volts
// offset 6
scaled_channel<uint16_t, 1000, 1> v2;
// AFR
// offset 8
scaled_channel<uint16_t, 1000, 1> value2;
// offset 10
uint8_t alignmentFill_at_10[2];
};
static_assert(sizeof(afr_sensor_s) == 12);
struct idle_hardware_s {
// Hz
// offset 0
int solenoidFrequency;
// offset 4
output_pin_e solenoidPin;
// offset 6
Gpio stepperDirectionPin;
// offset 8
Gpio stepperStepPin;
// offset 10
pin_output_mode_e solenoidPinMode;
// offset 11
uint8_t alignmentFill_at_11[1];
};
static_assert(sizeof(idle_hardware_s) == 12);
struct dc_io {
// offset 0
Gpio directionPin1;
// offset 2
Gpio directionPin2;
// Acts as EN pin in two-wire mode
// offset 4
Gpio controlPin;
// offset 6
Gpio disablePin;
};
static_assert(sizeof(dc_io) == 8);
struct vr_threshold_s {
// rpm
// offset 0
scaled_channel<uint8_t, 1, 50> rpmBins[6];
// volts
// offset 6
scaled_channel<uint8_t, 100, 1> values[6];
// offset 12
Gpio pin;
// offset 14
uint8_t alignmentFill_at_14[2];
};
static_assert(sizeof(vr_threshold_s) == 16);
struct engine_configuration_s {
// http://rusefi.com/wiki/index.php?title=Manual:Engine_Type
// offset 0
engine_type_e engineType;
// Disable sensor sniffer above this rpm
// RPM
// offset 4
uint16_t sensorSnifferRpmThreshold;
// A secondary Rev limit engaged by the driver to help launch the vehicle faster
// rpm
// offset 6
uint16_t launchRpm;
// rpm
// offset 8
uint16_t rpmHardLimit;
// Engine sniffer would be disabled above this rpm
// RPM
// offset 10
uint16_t engineSnifferRpmThreshold;
// Disable multispark above this engine speed.
// rpm
// offset 12
scaled_channel<uint8_t, 1, 50> multisparkMaxRpm;
// Above this RPM, disable AC. Set to 0 to disable check.
// rpm
// offset 13
scaled_channel<uint8_t, 1, 50> maxAcRpm;
// Above this TPS, disable AC. Set to 0 to disable check.
// %
// offset 14
uint8_t maxAcTps;
// Above this CLT, disable AC to prevent overheating the engine. Set to 0 to disable check.
// deg C
// offset 15
uint8_t maxAcClt;
// RPM
// offset 16
uint16_t knockNoiseRpmBins[ENGINE_NOISE_CURVE_SIZE];
// This parameter sets the latest that the last multispark can occur after the main ignition event. For example, if the ignition timing is 30 degrees BTDC, and this parameter is set to 45, no multispark will ever be fired after 15 degrees ATDC.
// deg
// offset 48
uint8_t multisparkMaxSparkingAngle;
// Configures the maximum number of extra sparks to fire (does not include main spark)
// count
// offset 49
uint8_t multisparkMaxExtraSparkCount;
// Single coil = distributor
// Individual coils = one coil per cylinder (COP, coil-near-plug), requires sequential mode
// Wasted spark = Fires pairs of cylinders together, either one coil per pair of cylinders or one coil per cylinder
// Two distributors = A pair of distributors, found on some BMW, Toyota and other engines
// offset 50
ignition_mode_e ignitionMode;
// offset 51
can_nbc_e canNbcType;
// offset 52
injector_s injector;
// Does the vehicle have a turbo or supercharger?
// offset 88 bit 0
bool isForcedInduction : 1 {};
// On some Ford and Toyota vehicles one of the throttle sensors is not linear on the full range, i.e. in the specific range of the positions we effectively have only one sensor.
// offset 88 bit 1
bool useFordRedundantTps : 1 {};
// offset 88 bit 2
bool lambdaProtectionEnable : 1 {};
// offset 88 bit 3
bool overrideTriggerGaps : 1 {};
// Turn on this fan when AC is on.
// offset 88 bit 4
bool enableFan1WithAc : 1 {};
// Turn on this fan when AC is on.
// offset 88 bit 5
bool enableFan2WithAc : 1 {};
// Inhibit operation of this fan while the engine is not running.
// offset 88 bit 6
bool disableFan1WhenStopped : 1 {};
// Inhibit operation of this fan while the engine is not running.
// offset 88 bit 7
bool disableFan2WhenStopped : 1 {};
// Enable secondary spark outputs that fire after the primary (rotaries, twin plug engines).
// offset 88 bit 8
bool enableTrailingSparks : 1 {};
// TLE7209 uses two-wire mode. TLE9201 and VNH2SP30 do NOT use two wire mode.
// offset 88 bit 9
bool etb_use_two_wires : 1 {};
// Subaru/BMW style where default valve position is somewhere in the middle. First solenoid opens it more while second can close it more than default position.
// offset 88 bit 10
bool isDoubleSolenoidIdle : 1 {};
// offset 88 bit 11
bool unused88b11 : 1 {};
// offset 88 bit 12
bool useTLE8888_cranking_hack : 1 {};
// offset 88 bit 13
bool kickStartCranking : 1 {};
// This uses separate ignition timing and VE tables not only for idle conditions, also during the postcranking-to-idle taper transition (See also afterCrankingIACtaperDuration).
// offset 88 bit 14
bool useSeparateIdleTablesForCrankingTaper : 1 {};
// offset 88 bit 15
bool launchControlEnabled : 1 {};
// "Detect double trigger edges"
// offset 88 bit 16
bool doNotFilterTriggerEdgeNoise : 1 {};
// offset 88 bit 17
bool antiLagEnabled : 1 {};
// For cranking either use the specified fixed base fuel mass, or use the normal running math (VE table).
// offset 88 bit 18
bool useRunningMathForCranking : 1 {};
// offset 88 bit 19
bool useTLE8888_stepper : 1 {};
// offset 88 bit 20
bool usescriptTableForCanSniffingFiltering : 1 {};
// Print incoming and outgoing first bus CAN messages in FOME console
// offset 88 bit 21
bool verboseCan : 1 {};
// Experimental setting that will cause a misfire
// DO NOT ENABLE.
// offset 88 bit 22
bool artificialTestMisfire : 1 {};
// On some Ford and Toyota vehicles one of the pedal sensors is not linear on the full range, i.e. in the specific range of the positions we effectively have only one sensor.
// offset 88 bit 23
bool useFordRedundantPps : 1 {};
// offset 88 bit 24
bool cltSensorPulldown : 1 {};
// offset 88 bit 25
bool iatSensorPulldown : 1 {};
// offset 88 bit 26
bool allowIdenticalPps : 1 {};
// offset 88 bit 27
bool unusedBit_42_27 : 1 {};
// offset 88 bit 28
bool unusedBit_42_28 : 1 {};
// offset 88 bit 29
bool unusedBit_42_29 : 1 {};
// offset 88 bit 30
bool unusedBit_42_30 : 1 {};
// offset 88 bit 31
bool unusedBit_42_31 : 1 {};
// Closed throttle, 1 volt = 200 units
// ADC
// offset 92
int16_t tpsMin;
// Full throttle, 1 volt = 200 units
// ADC
// offset 94
int16_t tpsMax;
// TPS error detection: what throttle % is unrealistically low?
// Also used for accelerator pedal error detection if so equiped.
// %
// offset 96
int16_t tpsErrorDetectionTooLow;
// TPS error detection: what throttle % is unrealistically high?
// Also used for accelerator pedal error detection if so equiped.
// %
// offset 98
int16_t tpsErrorDetectionTooHigh;
// offset 100
cranking_parameters_s cranking;
// Dwell duration while cranking
// ms
// offset 108
float ignitionDwellForCrankingMs;
// Once engine speed passes this value, start reducing ETB angle.
// rpm
// offset 112
uint16_t etbRevLimitStart;
// This far above 'Soft limiter start', fully close the throttle. At the bottom of the range, throttle control is normal. At the top of the range, the throttle is fully closed.
// rpm
// offset 114
uint16_t etbRevLimitRange;
// offset 116
MAP_sensor_config_s map;
// todo: merge with channel settings, use full-scale Thermistor here!
// offset 256
ThermistorConf clt;
// offset 288
ThermistorConf iat;
// deg
// offset 320
int launchTimingRetard;
// We calculate knock band based of cylinderBore
// Use this to override - kHz knock band override
// Requires power cycling to effect
// kHz
// offset 324
float knockBandCustom;
// Engine displacement in litres
// L
// offset 328
scaled_channel<uint16_t, 1000, 1> displacement;
// RPM
// offset 330
uint16_t triggerSimulatorRpm;
// Number of cylinder the engine has.
// offset 332
uint32_t cylindersCount;
// offset 336
firing_order_e firingOrder;
// offset 337
uint8_t unusedOldBenchTest;
// Duration of each test pulse
// ms
// offset 338
scaled_channel<uint16_t, 100, 1> benchTestOnTime;
// Cylinder diameter in mm.
// mm
// offset 340
float cylinderBore;
// This setting controls which fuel quantity control algorithm is used.
// Alpha-N means drive by TPS commonly only used for NA engines
// Speed Density requires MAP sensor and is the default choice for may installs
// MAF air charge is a cylinder filling based method that uses a mass air flow sensor.
// offset 344
engine_load_mode_e fuelAlgorithm;
// %
// offset 345
uint8_t ALSMaxTPS;
// offset 346
Gpio binarySerialTxPin;
// offset 348
Gpio binarySerialRxPin;
// This is the injection strategy during engine start. See Fuel/Injection settings for more detail. It is suggested to use "Simultaneous".
// offset 350
injection_mode_e crankingInjectionMode;
// This is where the fuel injection type is defined: "Simultaneous" means all injectors will fire together at once. "Sequential" fires the injectors on a per cylinder basis, which requires individually wired injectors. "Batched" will fire the injectors in groups. If your injectors are individually wired you will also need to enable "Two wire batch emulation".
// offset 351
injection_mode_e injectionMode;
// Minimum RPM to enable boost control. Use this to avoid solenoid noise at idle, and help spool in some cases.
// offset 352
uint16_t boostControlMinRpm;
// Minimum TPS to enable boost control. Use this to avoid solenoid noise at idle, and help spool in some cases.
// offset 354
uint8_t boostControlMinTps;
// Minimum MAP to enable boost control. Use this to avoid solenoid noise at idle, and help spool in some cases.
// offset 355
uint8_t boostControlMinMap;
// Dynamic uses the timing map to decide the ignition timing, Static timing fixes the timing to the value set below (only use for checking static timing with a timing light).
// offset 356
timing_mode_e timingMode;
// offset 357
adc_channel_e mafAdcChannel;
// How many test bench pulses do you want
// offset 358
uint16_t benchTestCount;
// Ignition advance angle used during engine cranking, 5-10 degrees will work as a base setting for most engines.
// There is tapering towards running timing advance
// deg
// offset 360
angle_t crankingTimingAngle;
// How many consecutive gap rations have to match expected ranges for sync to happen
// count
// offset 364
int8_t gapTrackingLengthOverride;
// Above this speed, disable closed loop idle control. Set to 0 to disable (allow closed loop idle at any speed).
// kph
// offset 365
uint8_t maxIdleVss;
// Expected oil pressure after starting the engine. If oil pressure does not reach this level within 5 seconds of engine start, fuel will be cut. Set to 0 to disable and always allow starting.
// kPa
// offset 366
uint16_t minOilPressureAfterStart;
// This value is the ignition timing used when in 'fixed timing' mode, i.e. constant timing
// This mode is useful when adjusting distributor location.
// RPM
// offset 368
angle_t fixedModeTiming;
// Angle between Top Dead Center (TDC) and the first trigger event.
// Positive value in case of synchnization point before TDC and negative in case of synchnization point after TDC
// .Knowing this angle allows us to control timing and other angles in reference to TDC.
// deg btdc
// offset 372
angle_t globalTriggerAngleOffset;
// Ratio/coefficient of input voltage dividers on your PCB. For example, use '2' if your board divides 5v into 2.5v. Use '1.66' if your board divides 5v into 3v.
// coef
// offset 376
float analogInputDividerCoefficient;
// This is the ratio of the resistors for the battery voltage, measure the voltage at the battery and then adjust this number until the gauge matches the reading.
// coef
// offset 380
float vbattDividerCoeff;
// Cooling fan turn-on temperature threshold, in Celsius
// deg C
// offset 384
uint8_t fanOnTemperature;
// Cooling fan turn-off temperature threshold, in Celsius
// deg C
// offset 385
uint8_t fanOffTemperature;
// offset 386
output_pin_e acrPin;
// Number of revolutions per kilometer for the wheels your vehicle speed sensor is connected to. Use an online calculator to determine this based on your tire size.
// revs/km
// offset 388
float driveWheelRevPerKm;
// CANbus thread period in ms
// ms
// offset 392
int canSleepPeriodMs;
// index
// offset 396
int byFirmwareVersion;
// First throttle body, first sensor
// offset 400
adc_channel_e tps1_1AdcChannel;
// This is the processor input pin that the battery voltage circuit is connected to, if you are unsure of what pin to use, check the schematic that corresponds to your PCB.
// offset 401
adc_channel_e vbattAdcChannel;
// This is the processor pin that your fuel level sensor in connected to. This is a non standard input so will need to be user defined.
// offset 402
adc_channel_e fuelLevelSensor;
// Second throttle body, first sensor
// offset 403
adc_channel_e tps2_1AdcChannel;
// 0.1 is a good default value
// x
// offset 404
float idle_derivativeFilterLoss;
// just a temporary solution
// angle
// offset 408
int trailingSparkAngle;
// offset 412
trigger_config_s trigger;
// Extra air taper amount
// %
// offset 424
float airByRpmTaper;
// Duty cycle to use in case of a sensor failure. This duty cycle should produce the minimum possible amount of boost. This duty is also used in case any of the minimum RPM/TPS/MAP conditions are not met.
// %
// offset 428
uint8_t boostControlSafeDutyCycle;
// Throttle pedal position first channel
// offset 429
adc_channel_e throttlePedalPositionAdcChannel;
// offset 430
pin_output_mode_e tle6240_csPinMode;
// offset 431
uint8_t acrRevolutions;
// coef
// offset 432
float globalFuelCorrection;
// volts
// offset 436
float adcVcc;
// Deg
// offset 440
float mapCamDetectionAnglePosition;
// Camshaft input could be used either just for engine phase detection if your trigger shape does not include cam sensor as 'primary' channel, or it could be used for Variable Valve timing on one of the camshafts.
// offset 444
brain_input_pin_e camInputs[CAM_INPUTS_COUNT];
// offset 452
afr_sensor_s afr;
// offset 464
Gpio tle6240_cs;
// Throttle Pedal not pressed switch - used on some older vehicles like early Mazda Miata
// offset 466
switch_input_pin_e throttlePedalUpPin;
// offset 468
air_pressure_sensor_config_s baroSensor;
// offset 480
idle_hardware_s idle;
// Value between 0 and 100 used in Manual mode
// %
// offset 492
float manIdlePosition;
// Ignition timing to remove when a knock event occurs.
// %
// offset 496
scaled_channel<uint8_t, 10, 1> knockRetardAggression;
// After a knock event, reapply timing at this rate.
// deg/s
// offset 497
scaled_channel<uint8_t, 10, 1> knockRetardReapplyRate;
// Select which cam is used for engine sync. Other cams will be used only for VVT measurement, but not engine sync.
// offset 498
engineSyncCam_e engineSyncCam;
// Set this so your vehicle speed signal is responsive, but not noisy. Larger value give smoother but slower response.
// offset 499
uint8_t vssFilterReciprocal;
// Number of turns of your vehicle speed sensor per turn of the wheels. For example if your sensor is on the transmission output, enter your axle/differential ratio. If you are using a hub-mounted sensor, enter a value of 1.0.
// ratio
// offset 500
scaled_channel<uint16_t, 1000, 1> vssGearRatio;
// Number of pulses output per revolution of the shaft where your VSS is mounted. For example, GM applications of the T56 output 17 pulses per revolution of the transmission output shaft.
// count
// offset 502
uint8_t vssToothCount;
// Override the Y axis (load) value used for only the Idle VE table.
// Advanced users only: If you aren't sure you need this, you probably don't need this.
// offset 503
ve_override_e idleVeOverrideMode;
// offset 504
Gpio l9779_cs;
// On-off O2 sensor heater control. 'ON' if engine is running, 'OFF' if stopped or cranking.
// offset 506
output_pin_e o2heaterPin;
// offset 508
output_pin_e injectionPins[MAX_CYLINDER_COUNT];
// offset 532
output_pin_e ignitionPins[MAX_CYLINDER_COUNT];
// offset 556
pin_output_mode_e injectionPinMode;
// offset 557
pin_output_mode_e ignitionPinMode;
// offset 558
output_pin_e fuelPumpPin;
// offset 560
pin_output_mode_e fuelPumpPinMode;
// Throttle pedal, secondary channel.
// offset 561
adc_channel_e throttlePedalPositionSecondAdcChannel;
// Check engine light, also malfunction indicator light. Always blinks once on boot.
// offset 562
output_pin_e malfunctionIndicatorPin;
// offset 564
pin_output_mode_e malfunctionIndicatorPinMode;
// offset 565
pin_output_mode_e fanPinMode;
// offset 566
output_pin_e fanPin;
// Some cars have a switch to indicate that clutch pedal is all the way down
// offset 568
switch_input_pin_e clutchDownPin;
// offset 570
output_pin_e alternatorControlPin;
// offset 572
pin_output_mode_e alternatorControlPinMode;
// offset 573
pin_input_mode_e clutchDownPinMode;
// offset 574
pin_output_mode_e electronicThrottlePin1Mode;
// offset 575
spi_device_e max31855spiDevice;
// offset 576
Gpio debugTriggerSync;
// offset 578
Gpio mc33972_cs;
// offset 580
pin_output_mode_e mc33972_csPinMode;
// Useful in Research&Development phase
// offset 581
adc_channel_e auxFastSensor1_adcChannel;
// First throttle body, second sensor.
// offset 582
adc_channel_e tps1_2AdcChannel;
// Second throttle body, second sensor.
// offset 583
adc_channel_e tps2_2AdcChannel;
// %
// offset 584
uint8_t fuelLevelValues[FUEL_LEVEL_TABLE_COUNT];
// 0.1 is a good default value
// x
// offset 592
float idle_antiwindupFreq;
// offset 596
brain_input_pin_e triggerInputPins[TRIGGER_INPUT_PIN_COUNT];
// Minimum allowed time for the boost phase. If the boost target current is reached before this time elapses, it is assumed that the injector has failed short circuit.
// us
// offset 600
uint16_t mc33_t_min_boost;
// offset 602
output_pin_e tachOutputPin;
// offset 604
pin_output_mode_e tachOutputPinMode;
// offset 605
adc_channel_e maf2AdcChannel;
// offset 606
output_pin_e mainRelayPin;
// offset 608
Gpio sdCardCsPin;
// set_can_tx_pin X
// offset 610
Gpio canTxPin;
// set_can_rx_pin X
// offset 612
Gpio canRxPin;
// offset 614
pin_input_mode_e throttlePedalUpPinMode;
// Additional idle % while A/C is active
// %
// offset 615
uint8_t acIdleExtraOffset;
// Ratio between the wheels and your transmission output.
// ratio
// offset 616
scaled_channel<uint16_t, 100, 1> finalGearRatio;
// offset 618
brain_input_pin_e tcuInputSpeedSensorPin;
// offset 620
uint8_t tcuInputSpeedSensorTeeth;
// offset 621
pin_output_mode_e mainRelayPinMode;
// Voltage when the wastegate is closed.
// You probably don't have one of these!
// mv
// offset 622
uint16_t wastegatePositionMin;
// Voltage when the wastegate is fully open.
// You probably don't have one of these!
// 1 volt = 1000 units
// mv
// offset 624
uint16_t wastegatePositionMax;
// Some Subaru and some Mazda use double-solenoid idle air valve
// offset 626
output_pin_e secondSolenoidPin;
// Secondary TTL channel baud rate
// BPs
// offset 628
uint32_t tunerStudioSerialSpeed;
// Just for reference really, not taken into account by any logic at this point
// CR
// offset 632
float compressionRatio;
// Generate a synthetic trigger signal for an external ECU
// offset 636
Gpio triggerSimulatorPins[TRIGGER_SIMULATOR_PIN_COUNT];
// g/s
// offset 640
scaled_channel<uint16_t, 1000, 1> fordInjectorSmallPulseSlope;
// RPM
// offset 642
scaled_channel<uint8_t, 1, 100> lambdaProtectionMinRpm;
// %
// offset 643
scaled_channel<uint8_t, 1, 10> lambdaProtectionMinLoad;
// offset 644 bit 0
bool is_enabled_spi_1 : 1 {};
// offset 644 bit 1
bool is_enabled_spi_2 : 1 {};
// offset 644 bit 2
bool is_enabled_spi_3 : 1 {};
// enable sd/disable sd
// offset 644 bit 3
bool isSdCardEnabled : 1 {};
// Use 11 bit (standard) or 29 bit (extended) IDs for FOME verbose CAN format.
// offset 644 bit 4
bool rusefiVerbose29b : 1 {};
// offset 644 bit 5
bool isVerboseAlternator : 1 {};
// This setting should only be used if you have a stepper motor idle valve and a stepper motor driver installed.
// offset 644 bit 6
bool useStepperIdle : 1 {};
// offset 644 bit 7
bool enabledStep1Limiter : 1 {};
// offset 644 bit 8
bool verboseTLE8888 : 1 {};
// CAN broadcast using custom FOME protocol
// enable can_broadcast/disable can_broadcast
// offset 644 bit 9
bool enableVerboseCanTx : 1 {};
// offset 644 bit 10
bool etb1configured : 1 {};
// offset 644 bit 11
bool etb2configured : 1 {};
// Useful for individual intakes
// offset 644 bit 12
bool measureMapOnlyInOneCylinder : 1 {};
// offset 644 bit 13
bool stepperForceParkingEveryRestart : 1 {};
// If enabled, try to fire the engine before a full engine cycle has been completed using RPM estimated from the last 90 degrees of engine rotation. As soon as the trigger syncs plus 90 degrees rotation, fuel and ignition events will occur. If disabled, worst case may require up to 4 full crank rotations before any events are scheduled.
// offset 644 bit 14
bool isFasterEngineSpinUpEnabled : 1 {};
// This setting disables fuel injection while the engine is in overrun, this is useful as a fuel saving measure and to prevent back firing.
// offset 644 bit 15
bool coastingFuelCutEnabled : 1 {};
// Override the IAC position during overrun conditions to help reduce engine breaking, this can be helpful for large engines in light weight cars or engines that have trouble returning to idle.
// offset 644 bit 16
bool useIacTableForCoasting : 1 {};
// offset 644 bit 17
bool useIdleTimingPidControl : 1 {};
// Allows disabling the ETB when the engine is stopped. You may not like the power draw or PWM noise from the motor, so this lets you turn it off until it's necessary.
// offset 644 bit 18
bool disableEtbWhenEngineStopped : 1 {};
// offset 644 bit 19
bool is_enabled_spi_4 : 1 {};
// Disable the electronic throttle motor and DC idle motor for testing.
// This mode is for testing ETB/DC idle position sensors, etc without actually driving the throttle.
// offset 644 bit 20
bool pauseEtbControl : 1 {};
// offset 644 bit 21
bool alignEngineSnifferAtTDC : 1 {};
// AEM X-Series or rusEFI Wideband
// offset 644 bit 22
bool enableAemXSeries : 1 {};
// offset 644 bit 23
bool unusedBit_196_23 : 1 {};
// offset 644 bit 24
bool unusedBit_196_24 : 1 {};
// offset 644 bit 25
bool unusedBit_196_25 : 1 {};
// offset 644 bit 26
bool unusedBit_196_26 : 1 {};
// offset 644 bit 27
bool unusedBit_196_27 : 1 {};
// offset 644 bit 28
bool unusedBit_196_28 : 1 {};
// offset 644 bit 29
bool unusedBit_196_29 : 1 {};
// offset 644 bit 30
bool unusedBit_196_30 : 1 {};
// offset 644 bit 31
bool unusedBit_196_31 : 1 {};
// offset 648
brain_input_pin_e logicAnalyzerPins[LOGIC_ANALYZER_CHANNEL_COUNT];
// offset 656
uint32_t verboseCanBaseAddress;
// Boost Voltage
// v
// offset 660
uint8_t mc33_hvolt;
// Minimum MAP before closed loop boost is enabled. Use to prevent misbehavior upon entering boost.
// kPa
// offset 661
uint8_t minimumBoostClosedLoopMap;
// Optional Radiator Fan used with A/C
// offset 662
output_pin_e acFanPin;
// offset 664
pin_output_mode_e acFanPinMode;
// offset 665
spi_device_e l9779spiDevice;
// volts
// offset 666
scaled_channel<uint8_t, 10, 1> dwellVoltageCorrVoltBins[DWELL_CURVE_SIZE];
// multiplier
// offset 674
scaled_channel<uint8_t, 50, 1> dwellVoltageCorrValues[DWELL_CURVE_SIZE];
// kg
// offset 682
uint16_t vehicleWeight;
// How far above idle speed do we consider idling?
// For example, if target = 800, this param = 200, then anything below 1000 RPM is considered idle.
// RPM
// offset 684
int16_t idlePidRpmUpperLimit;
// Apply nonlinearity correction below a pulse of this duration. Pulses longer than this duration will receive no adjustment.
// ms
// offset 686
scaled_channel<uint16_t, 1000, 1> applyNonlinearBelowPulse;
// offset 688
Gpio lps25BaroSensorScl;
// offset 690
Gpio lps25BaroSensorSda;
// offset 692
brain_input_pin_e vehicleSpeedSensorInputPin;
// Some vehicles have a switch to indicate that clutch pedal is all the way up
// offset 694
switch_input_pin_e clutchUpPin;
// offset 696
InjectorNonlinearMode injectorNonlinearMode;
// offset 697
pin_input_mode_e clutchUpPinMode;
// offset 698
Gpio max31855_cs[EGT_CHANNEL_COUNT];
// Continental/GM flex fuel sensor, 50-150hz type
// offset 714
brain_input_pin_e flexSensorPin;
// offset 716
Gpio test557pin;
// offset 718
pin_output_mode_e stepperDirectionPinMode;
// offset 719
spi_device_e mc33972spiDevice;
// Stoichiometric ratio for your secondary fuel. This value is used when the Flex Fuel sensor indicates E100, typically 9.0
// :1
// offset 720
scaled_channel<uint8_t, 10, 1> stoichRatioSecondary;
// Maximum allowed ETB position. Some throttles go past fully open, so this allows you to limit it to fully open.
// %
// offset 721
uint8_t etbMaximumPosition;
// Rate the ECU will log to the SD card, in hz (log lines per second).
// hz
// offset 722
uint16_t sdCardLogFrequency;
// offset 724
Gpio debugMapAveraging;
// offset 726
output_pin_e starterRelayDisablePin;
// On some vehicles we can disable starter once engine is already running
// offset 728
pin_output_mode_e starterRelayDisablePinMode;
// offset 729
imu_type_e imuType;
// offset 730
switch_input_pin_e startStopButtonPin;
// This many MAP samples are used to estimate the current MAP. This many samples are considered, and the minimum taken. Recommended value is 1 for single-throttle engines, and your number of cylinders for individual throttle bodies.
// count
// offset 732
int mapMinBufferLength;
// Below this throttle position, the engine is considered idling. If you have an electronic throttle, this checks accelerator pedal position instead of throttle position, and should be set to 1-2%.
// %
// offset 736
int16_t idlePidDeactivationTpsThreshold;
// %
// offset 738
int16_t stepperParkingExtraSteps;
// ADC
// offset 740
uint16_t tps1SecondaryMin;
// ADC
// offset 742
uint16_t tps1SecondaryMax;
// rpm
// offset 744
int16_t antiLagRpmTreshold;
// Maximum time to crank starter when start/stop button is pressed
// Seconds
// offset 746
uint16_t startCrankingDuration;
// %
// offset 748
uint8_t lambdaProtectionMinTps;
// Only respond once lambda is out of range for this period of time. Use to avoid transients triggering lambda protection when not needed
// s
// offset 749
scaled_channel<uint8_t, 10, 1> lambdaProtectionTimeout;
// RPM
// offset 750
scaled_channel<uint8_t, 1, 100> lambdaProtectionRestoreRpm;
// offset 751
pin_output_mode_e acRelayPinMode;
// offset 752
output_pin_e acRelayPin;
// offset 754
maf_sensor_type_e mafSensorType;
// offset 755
spi_device_e drv8860spiDevice;
// offset 756
script_setting_t scriptSetting[SCRIPT_SETTING_COUNT];
// offset 788
Gpio spi1mosiPin;
// offset 790
Gpio spi1misoPin;
// offset 792
Gpio spi1sckPin;
// offset 794
Gpio spi2mosiPin;
// offset 796
Gpio spi2misoPin;
// offset 798
Gpio spi2sckPin;
// offset 800
Gpio spi3mosiPin;
// offset 802
Gpio spi3misoPin;
// offset 804
Gpio spi3sckPin;
// offset 806
uart_device_e consoleUartDevice;
// rusEFI console Sensor Sniffer mode
// offset 807
sensor_chart_e sensorChartMode;
// offset 808 bit 0
bool clutchUpPinInverted : 1 {};
// offset 808 bit 1
bool clutchDownPinInverted : 1 {};
// If enabled we use two H-bridges to drive stepper idle air valve
// offset 808 bit 2
bool useHbridgesToDriveIdleStepper : 1 {};
// offset 808 bit 3
bool multisparkEnable : 1 {};
// offset 808 bit 4
bool enableLaunchRetard : 1 {};
// Read VSS from OEM CAN bus according to selected CAN vehicle configuration.
// offset 808 bit 5
bool enableCanVss : 1 {};
// offset 808 bit 6
bool enableInnovateLC2 : 1 {};
// offset 808 bit 7
bool unused808b7 : 1 {};
// If enabled, adjust at a constant rate instead of a rate proportional to the current lambda error. This mode may be easier to tune, and more tolerant of sensor noise.
// offset 808 bit 8
bool stftIgnoreErrorMagnitude : 1 {};
// offset 808 bit 9
bool enableSoftwareKnock : 1 {};
// Verbose info in console below engineSnifferRpmThreshold
// enable vvt_details
// offset 808 bit 10
bool verboseVVTDecoding : 1 {};
// get invertCamVVTSignal
// offset 808 bit 11
bool invertCamVVTSignal : 1 {};
// In Alpha-N mode, compensate for air temperature.
// offset 808 bit 12
bool alphaNUseIat : 1 {};
// offset 808 bit 13
bool knockBankCyl1 : 1 {};
// offset 808 bit 14
bool knockBankCyl2 : 1 {};
// offset 808 bit 15
bool knockBankCyl3 : 1 {};
// offset 808 bit 16
bool knockBankCyl4 : 1 {};
// offset 808 bit 17
bool knockBankCyl5 : 1 {};
// offset 808 bit 18
bool knockBankCyl6 : 1 {};
// offset 808 bit 19
bool knockBankCyl7 : 1 {};
// offset 808 bit 20
bool knockBankCyl8 : 1 {};
// offset 808 bit 21
bool knockBankCyl9 : 1 {};
// offset 808 bit 22
bool knockBankCyl10 : 1 {};
// offset 808 bit 23
bool knockBankCyl11 : 1 {};
// offset 808 bit 24
bool knockBankCyl12 : 1 {};
// offset 808 bit 25
bool tcuEnabled : 1 {};
// offset 808 bit 26
bool canBroadcastUseChannelTwo : 1 {};
// If enabled we use four Push-Pull outputs to directly drive stepper idle air valve coilss
// offset 808 bit 27
bool useRawOutputToDriveIdleStepper : 1 {};
// Print incoming and outgoing second bus CAN messages in FOME console
// offset 808 bit 28
bool verboseCan2 : 1 {};
// offset 808 bit 29
bool unusedBit_291_29 : 1 {};
// offset 808 bit 30
bool unusedBit_291_30 : 1 {};
// offset 808 bit 31
bool unusedBit_291_31 : 1 {};
// offset 812
dc_io etbIo[ETB_COUNT];
// Wastegate control Solenoid
// offset 828
output_pin_e boostControlPin;
// offset 830
pin_output_mode_e boostControlPinMode;
// offset 831
boostType_e boostType;
// offset 832
switch_input_pin_e ALSActivatePin;
// offset 834
switch_input_pin_e launchActivatePin;
// offset 836
pid_s boostPid;
// Hz
// offset 856
int boostPwmFrequency;
// offset 860
launchActivationMode_e launchActivationMode;
// offset 861
antiLagActivationMode_e antiLagActivationMode;
// offset 862
Gpio mc33816_flag0;
// Disabled above this speed
// Kph
// offset 864
int launchSpeedThreshold;
// Range from Launch RPM for Timing Retard to activate
// RPM
// offset 868
int launchTimingRpmRange;
// Extra Fuel Added
// %
// offset 872
int launchFuelAdded;
// Duty Cycle for the Boost Solenoid
// %
// offset 876
int launchBoostDuty;
// Range from Launch RPM to activate Hard Cut
// RPM
// offset 880
int hardCutRpmRange;
// offset 884
float turbochargerFilter;
// offset 888
int launchTpsThreshold;
// offset 892
float launchActivateDelay;
// offset 896
stft_s stft;
// offset 920
dc_io stepperDcIo[DC_PER_STEPPER];
// For example, BMW, GM or Chevrolet
// offset 936
vehicle_info_t engineMake;
// For example, LS1 or NB2
// offset 968
vehicle_info_t engineCode;
// For example, Hunchback or Orange Miata
// Vehicle name has to be unique between your vehicles.
// offset 1000
vehicle_info_t vehicleName;
// offset 1032
output_pin_e tcu_solenoid[TCU_SOLENOID_COUNT];
// offset 1044
dc_function_e etbFunctions[ETB_COUNT];
// offset 1046
Gpio drv8860_cs;
// offset 1048
pin_output_mode_e drv8860_csPinMode;
// offset 1049
idle_mode_e idleMode;
// offset 1050
Gpio drv8860_miso;
// volt
// offset 1052
scaled_channel<uint16_t, 1000, 1> fuelLevelBins[FUEL_LEVEL_TABLE_COUNT];
// offset 1068
output_pin_e luaOutputPins[LUA_PWM_COUNT];
// Angle between cam sensor and VVT zero position
// value
// offset 1084
scaled_channel<int16_t, 10, 1> vvtOffsets[CAM_INPUTS_COUNT];
// offset 1092
vr_threshold_s vrThreshold[VR_THRESHOLD_COUNT];
// offset 1124
gppwm_note_t gpPwmNote[GPPWM_CHANNELS];
// ADC
// offset 1188
uint16_t tps2SecondaryMin;
// ADC
// offset 1190
uint16_t tps2SecondaryMax;
// Select which bus the wideband controller is attached to.
// offset 1192 bit 0
bool widebandOnSecondBus : 1 {};
// Enables lambda sensor closed loop feedback for fuelling.
// offset 1192 bit 1
bool fuelClosedLoopCorrectionEnabled : 1 {};
// offset 1192 bit 2
bool unused1192b2 : 1 {};
// offset 1192 bit 3
bool boardUseTachPullUp : 1 {};
// offset 1192 bit 4
bool boardUseTempPullUp : 1 {};
// offset 1192 bit 5
bool yesUnderstandLocking : 1 {};
// Sometimes we have a performance issue while printing error
// offset 1192 bit 6
bool silentTriggerError : 1 {};
// offset 1192 bit 7
bool useLinearCltSensor : 1 {};
// enable can_read/disable can_read
// offset 1192 bit 8
bool canReadEnabled : 1 {};
// enable can_write/disable can_write
// offset 1192 bit 9
bool canWriteEnabled : 1 {};
// offset 1192 bit 10
bool useLinearIatSensor : 1 {};
// offset 1192 bit 11
bool boardUse2stepPullDown : 1 {};
// Treat milliseconds value as duty cycle value, i.e. 0.5ms would become 50%
// offset 1192 bit 12
bool tachPulseDurationAsDutyCycle : 1 {};
// This enables smart alternator control and activates the extra alternator settings.
// offset 1192 bit 13
bool isAlternatorControlEnabled : 1 {};
// Invert the signal from the primary trigger sensor.
// offset 1192 bit 14
bool invertPrimaryTriggerSignal : 1 {};
// Invert the signal from the secondary trigger sensor.
// offset 1192 bit 15
bool invertSecondaryTriggerSignal : 1 {};
// offset 1192 bit 16
bool cutFuelOnHardLimit : 1 {};
// Be careful enabling this: some engines are known to self-disassemble their valvetrain with a spark cut. Fuel cut is much safer.
// offset 1192 bit 17
bool cutSparkOnHardLimit : 1 {};
// offset 1192 bit 18
bool launchFuelCutEnable : 1 {};
// This is the Cut Mode normally used
// offset 1192 bit 19
bool launchSparkCutEnable : 1 {};
// offset 1192 bit 20
bool boardUseCrankPullUp : 1 {};
// offset 1192 bit 21
bool boardUseCamPullDown : 1 {};
// offset 1192 bit 22
bool boardUseCamVrPullUp : 1 {};
// offset 1192 bit 23
bool boardUseD2PullDown : 1 {};
// offset 1192 bit 24
bool boardUseD3PullDown : 1 {};
// offset 1192 bit 25
bool boardUseD4PullDown : 1 {};
// offset 1192 bit 26
bool boardUseD5PullDown : 1 {};
// offset 1192 bit 27
bool verboseIsoTp : 1 {};
// offset 1192 bit 28
bool engineSnifferFocusOnInputs : 1 {};
// offset 1192 bit 29
bool launchActivateInverted : 1 {};
// offset 1192 bit 30
bool twoStroke : 1 {};
// Where is your primary skipped wheel located?
// offset 1192 bit 31
bool skippedWheelOnCam : 1 {};
// A/C button input
// offset 1196
switch_input_pin_e acSwitch;
// offset 1198
adc_channel_e vRefAdcChannel;
// Expected neutral position
// %
// offset 1199
uint8_t etbNeutralPosition;
// offset 1200 bit 0
bool isInjectionEnabled : 1 {};
// offset 1200 bit 1
bool isIgnitionEnabled : 1 {};
// When enabled if TPS is held above 95% no fuel is injected while cranking to clear excess fuel from the cylinders.
// offset 1200 bit 2
bool isCylinderCleanupEnabled : 1 {};
// Should we use tables to vary tau/beta based on CLT/MAP, or just with fixed values?
// offset 1200 bit 3
bool complexWallModel : 1 {};
// offset 1200 bit 4
bool alwaysInstantRpm : 1 {};
// offset 1200 bit 5
bool isMapAveragingEnabled : 1 {};
// If enabled, use separate temperature multiplier table for cranking idle position.
// If disabled, use normal running multiplier table applied to the cranking base position.
// offset 1200 bit 6
bool overrideCrankingIacSetting : 1 {};
// This activates a separate ignition timing table for idle conditions, this can help idle stability by using ignition retard and advance either side of the desired idle speed. Extra retard at low idle speeds will prevent stalling and extra advance at high idle speeds can help reduce engine power and slow the idle speed.
// offset 1200 bit 7
bool useSeparateAdvanceForIdle : 1 {};
// offset 1200 bit 8
bool isWaveAnalyzerEnabled : 1 {};
// This activates a separate fuel table for Idle, this allows fine tuning of the idle fuelling.
// offset 1200 bit 9
bool useSeparateVeForIdle : 1 {};
// Verbose info in console below engineSnifferRpmThreshold
// enable trigger_details
// offset 1200 bit 10
bool verboseTriggerSynchDetails : 1 {};
// Usually if we have no trigger events that means engine is stopped
// Unless we are troubleshooting and spinning the engine by hand - this case a longer
// delay is needed
// offset 1200 bit 11
bool isManualSpinningMode : 1 {};
// offset 1200 bit 12
bool unused1200b12 : 1 {};
// offset 1200 bit 13
bool neverInstantRpm : 1 {};
// offset 1200 bit 14
bool unused1200b14 : 1 {};
// offset 1200 bit 15
bool useFixedBaroCorrFromMap : 1 {};
// In Constant mode, timing is automatically tapered to running as RPM increases.
// In Table mode, the "Cranking ignition advance" table is used directly.
// offset 1200 bit 16
bool useSeparateAdvanceForCranking : 1 {};
// This enables the various ignition corrections during cranking (IAT, CLT, FSIO and PID idle).
// You probably don't need this.
// offset 1200 bit 17
bool useAdvanceCorrectionsForCranking : 1 {};
// Enable a second cranking table to use for E100 flex fuel, interpolating between the two based on flex fuel sensor.
// offset 1200 bit 18
bool flexCranking : 1 {};
// This flag allows to use a special 'PID Multiplier' table (0.0-1.0) to compensate for nonlinear nature of IAC-RPM controller
// offset 1200 bit 19
bool useIacPidMultTable : 1 {};
// offset 1200 bit 20
bool isBoostControlEnabled : 1 {};
// Interpolates the Ignition Retard from 0 to 100% within the RPM Range
// offset 1200 bit 21
bool launchSmoothRetard : 1 {};
// Some engines are OK running semi-random sequential while other engine require phase synchronization
// offset 1200 bit 22
bool isPhaseSyncRequiredForIgnition : 1 {};
// If enabled, use a curve for RPM limit (based on coolant temperature) instead of a constant value.
// offset 1200 bit 23
bool useCltBasedRpmLimit : 1 {};
// If enabled, don't wait for engine start to heat O2 sensors. WARNING: this will reduce the life of your sensor, as condensation in the exhaust from a cold start can crack the sensing element.
// offset 1200 bit 24
bool forceO2Heating : 1 {};
// If increased VVT duty cycle increases the indicated VVT angle, set this to 'advance'. If it decreases, set this to 'retard'. Most intake cams use 'advance', and most exhaust cams use 'retard'.
// offset 1200 bit 25
bool invertVvtControlIntake : 1 {};
// If increased VVT duty cycle increases the indicated VVT angle, set this to 'advance'. If it decreases, set this to 'retard'. Most intake cams use 'advance', and most exhaust cams use 'retard'.
// offset 1200 bit 26
bool invertVvtControlExhaust : 1 {};
// offset 1200 bit 27
bool useBiQuadOnAuxSpeedSensors : 1 {};
// 'Trigger' mode will write a high speed log of trigger events (warning: uses lots of space!). 'Normal' mode will write a standard MLG of sensors, engine function, etc. similar to the one captured in TunerStudio.
// offset 1200 bit 28
bool sdTriggerLog : 1 {};
// offset 1200 bit 29
bool ALSActivateInverted : 1 {};
// offset 1200 bit 30
bool unusedBit_396_30 : 1 {};
// offset 1200 bit 31
bool unusedBit_396_31 : 1 {};
// count
// offset 1204
uint32_t engineChartSize;
// mult
// offset 1208
float turboSpeedSensorMultiplier;
// offset 1212
Gpio camInputsDebug[CAM_INPUTS_COUNT];
// Extra idle target speed when A/C is enabled. Some cars need the extra speed to keep the AC efficient while idling.
// RPM
// offset 1220
int16_t acIdleRpmBump;
// seconds
// offset 1222
int16_t warningPeriod;
// angle
// offset 1224
float knockDetectionWindowStart;
// angle
// offset 1228
float knockDetectionWindowEnd;
// ms
// offset 1232
float idleStepperReactionTime;
// count
// offset 1236
int idleStepperTotalSteps;
// TODO: finish this #413
// sec
// offset 1240
float noAccelAfterHardLimitPeriodSecs;
// At what trigger index should some MAP-related math be executed? This is a performance trick to reduce load on synchronization trigger callback.
// index
// offset 1244
int mapAveragingSchedulingAtIndex;
// Duration in ms or duty cycle depending on selected mode
// offset 1248
float tachPulseDuractionMs;
// Length of time the deposited wall fuel takes to dissipate after the start of acceleration.
// Seconds
// offset 1252
float wwaeTau;
// offset 1256
pid_s alternatorControl;
// offset 1276
pid_s etb;
// offset 1296
Gpio triggerInputDebugPins[TRIGGER_INPUT_PIN_COUNT];
// RPM range above upper limit for extra air taper
// RPM
// offset 1300
int16_t airTaperRpmRange;
// offset 1302
brain_input_pin_e turboSpeedSensorInputPin;
// ADC
// offset 1304
int16_t tps2Min;
// ADC
// offset 1306
int16_t tps2Max;
// offset 1308
output_pin_e starterControlPin;
// offset 1310
pin_input_mode_e startStopButtonMode;
// Pulse
// offset 1311
uint8_t tachPulsePerRev;
// kPa value which is too low to be true
// kPa
// offset 1312
float mapErrorDetectionTooLow;
// kPa value which is too high to be true
// kPa
// offset 1316
float mapErrorDetectionTooHigh;
// How long to wait for the spark to fire before recharging the coil for another spark.
// ms
// offset 1320
scaled_channel<uint16_t, 1000, 1> multisparkSparkDuration;
// This sets the dwell time for subsequent sparks. The main spark's dwell is set by the dwell table.
// ms
// offset 1322
scaled_channel<uint16_t, 1000, 1> multisparkDwell;
// offset 1324
pid_s idleRpmPid;
// 0 = No fuel settling on port walls 1 = All the fuel settling on port walls setting this to 0 disables the wall wetting enrichment.
// Fraction
// offset 1344
float wwaeBeta;
// offset 1348
Gpio auxValves[AUX_DIGITAL_VALVE_COUNT];
// offset 1352
switch_input_pin_e tcuUpshiftButtonPin;
// offset 1354
switch_input_pin_e tcuDownshiftButtonPin;
// voltage
// offset 1356
float throttlePedalUpVoltage;
// Pedal in the floor
// voltage
// offset 1360
float throttlePedalWOTVoltage;
// on IGN voltage detection turn fuel pump on to build fuel pressure
// seconds
// offset 1364
int16_t startUpFuelPumpDuration;
// If the RPM closer to target than this value, disable closed loop idle correction to prevent oscillation
// RPM
// offset 1366
int16_t idlePidRpmDeadZone;
// This is the target battery voltage the alternator PID control will attempt to maintain
// Volts
// offset 1368
float targetVBatt;
// Turns off alternator output above specified TPS, enabling this reduced parasitic drag on the engine at full load.
// %
// offset 1372
float alternatorOffAboveTps;
// This is the duration in cycles that the IAC will take to reach its normal idle position, it can be used to hold the idle higher for a few seconds after cranking to improve startup.
// cycles
// offset 1376
int16_t afterCrankingIACtaperDuration;
// Extra IAC, in percent between 0 and 100, tapered between zero and idle deactivation TPS value
// percent
// offset 1378
int16_t iacByTpsTaper;
// Auxiliary sensor serial, not to be confused with secondary calibration serial
// offset 1380
Gpio auxSerialTxPin;
// Auxiliary sensor serial, not to be confused with secondary calibration serial
// offset 1382
Gpio auxSerialRxPin;
// offset 1384
Gpio LIS302DLCsPin;
// How long to look back for TPS-based acceleration enrichment. Increasing this time will trigger enrichment for longer when a throttle position change occurs.
// sec
// offset 1386
scaled_channel<uint8_t, 20, 1> tpsAccelLookback;
// Below this speed, disable DFCO. Use this to prevent jerkiness from fuel enable/disable in low gears.
// kph
// offset 1387
uint8_t coastingFuelCutVssLow;
// Above this speed, allow DFCO. Use this to prevent jerkiness from fuel enable/disable in low gears.
// kph
// offset 1388
uint8_t coastingFuelCutVssHigh;
// Pause closed loop fueling after deceleration fuel cut occurs. Set this to a little longer than however long is required for normal fueling behavior to resume after fuel cut.
// sec
// offset 1389
scaled_channel<uint8_t, 10, 1> noFuelTrimAfterDfcoTime;
// Duration of each test pulse
// ms
// offset 1390
scaled_channel<uint8_t, 10, 1> ignTestOnTime;
// offset 1391
uint8_t alignmentFill_at_1391[1];
// Maximum change delta of TPS percentage over the 'length'. Actual TPS change has to be above this value in order for TPS/TPS acceleration to kick in.
// roc
// offset 1392
float tpsAccelEnrichmentThreshold;
// offset 1396
brain_input_pin_e auxSpeedSensorInputPin[2];
// offset 1400
uint8_t totalGearsCount;
// Sets what part of injection's is controlled by the injection phase table.
// offset 1401
InjectionTimingMode injectionTimingMode;
// See https://wiki.fome.tech/r/debugmode
// offset 1402
debug_mode_e debugMode;
// Additional idle % when fan #1 is active
// %
// offset 1403
uint8_t fan1ExtraIdle;
// Band rate for primary TTL
// BPs
// offset 1404
uint32_t uartConsoleSerialSpeed;
// For decel we simply multiply delta of TPS and tFor decel we do not use table?!
// roc
// offset 1408
float tpsDecelEnleanmentThreshold;
// Magic multiplier, we multiply delta of TPS and get fuel squirt duration
// coeff
// offset 1412
float tpsDecelEnleanmentMultiplier;
// BPs
// offset 1416
uint32_t auxSerialSpeed;
// voltage
// offset 1420
float throttlePedalSecondaryUpVoltage;
// Pedal in the floor
// voltage
// offset 1424
float throttlePedalSecondaryWOTVoltage;
// set can_baudrate
// offset 1428
can_baudrate_e canBaudRate;
// Override the Y axis (load) value used for the VE table.
// Advanced users only: If you aren't sure you need this, you probably don't need this.
// offset 1429
ve_override_e veOverrideMode;
// offset 1430
can_baudrate_e can2BaudRate;
// Override the Y axis (load) value used for the AFR table.
// Advanced users only: If you aren't sure you need this, you probably don't need this.
// offset 1431
load_override_e afrOverrideMode;
// A
// offset 1432
scaled_channel<uint8_t, 10, 1> mc33_hpfp_i_peak;
// A
// offset 1433
scaled_channel<uint8_t, 10, 1> mc33_hpfp_i_hold;
// How long to deactivate power when hold current is reached before applying power again
// us
// offset 1434
uint8_t mc33_hpfp_i_hold_off;
// Maximum amount of time the solenoid can be active before assuming a programming error
// ms
// offset 1435
uint8_t mc33_hpfp_max_hold;
// Enable if DC-motor driver (H-bridge) inverts the signals (eg. RZ7899 on Hellen boards)
// offset 1436 bit 0
bool stepperDcInvertedPins : 1 {};
// Allow OpenBLT on Primary CAN
// offset 1436 bit 1
bool canOpenBLT : 1 {};
// Allow OpenBLT on Secondary CAN
// offset 1436 bit 2
bool can2OpenBLT : 1 {};
// Select whether to configure injector flow in volumetric flow (defualt, cc/min) or mass flow (g/s).
// offset 1436 bit 3
bool injectorFlowAsMassFlow : 1 {};
// offset 1436 bit 4
bool unusedBit_471_4 : 1 {};
// offset 1436 bit 5
bool unusedBit_471_5 : 1 {};
// offset 1436 bit 6
bool unusedBit_471_6 : 1 {};
// offset 1436 bit 7
bool unusedBit_471_7 : 1 {};
// offset 1436 bit 8
bool unusedBit_471_8 : 1 {};
// offset 1436 bit 9
bool unusedBit_471_9 : 1 {};
// offset 1436 bit 10
bool unusedBit_471_10 : 1 {};
// offset 1436 bit 11
bool unusedBit_471_11 : 1 {};
// offset 1436 bit 12
bool unusedBit_471_12 : 1 {};
// offset 1436 bit 13
bool unusedBit_471_13 : 1 {};
// offset 1436 bit 14
bool unusedBit_471_14 : 1 {};
// offset 1436 bit 15
bool unusedBit_471_15 : 1 {};
// offset 1436 bit 16
bool unusedBit_471_16 : 1 {};
// offset 1436 bit 17
bool unusedBit_471_17 : 1 {};
// offset 1436 bit 18
bool unusedBit_471_18 : 1 {};
// offset 1436 bit 19
bool unusedBit_471_19 : 1 {};
// offset 1436 bit 20
bool unusedBit_471_20 : 1 {};
// offset 1436 bit 21
bool unusedBit_471_21 : 1 {};
// offset 1436 bit 22
bool unusedBit_471_22 : 1 {};
// offset 1436 bit 23
bool unusedBit_471_23 : 1 {};
// offset 1436 bit 24
bool unusedBit_471_24 : 1 {};
// offset 1436 bit 25
bool unusedBit_471_25 : 1 {};
// offset 1436 bit 26
bool unusedBit_471_26 : 1 {};
// offset 1436 bit 27
bool unusedBit_471_27 : 1 {};
// offset 1436 bit 28
bool unusedBit_471_28 : 1 {};
// offset 1436 bit 29
bool unusedBit_471_29 : 1 {};
// offset 1436 bit 30
bool unusedBit_471_30 : 1 {};
// offset 1436 bit 31
bool unusedBit_471_31 : 1 {};
// Time between bench test pulses
// ms
// offset 1440
scaled_channel<uint8_t, 1, 5> benchTestOffTime;
// %
// offset 1441
uint8_t lambdaProtectionRestoreTps;
// %
// offset 1442
scaled_channel<uint8_t, 1, 10> lambdaProtectionRestoreLoad;
// offset 1443
pin_input_mode_e launchActivatePinMode;
// set_can2_tx_pin X
// offset 1444
Gpio can2TxPin;
// set_can2_rx_pin X
// offset 1446
Gpio can2RxPin;
// offset 1448
pin_output_mode_e starterControlPinMode;
// offset 1449
adc_channel_e wastegatePositionSensor;
// Override the Y axis (load) value used for the ignition table.
// Advanced users only: If you aren't sure you need this, you probably don't need this.
// offset 1450
load_override_e ignOverrideMode;
// Select which fuel pressure sensor measures the pressure of the fuel at your injectors.
// offset 1451
injector_pressure_type_e injectorPressureType;
// offset 1452
output_pin_e hpfpValvePin;
// offset 1454
pin_output_mode_e hpfpValvePinMode;
// offset 1455
spi_device_e accelerometerSpiDevice;
// MAP value above which fuel is cut in case of overboost.
// Set to 0 to disable overboost cut.
// kPa (absolute)
// offset 1456
float boostCutPressure;
// kg/h
// offset 1460
scaled_channel<uint8_t, 1, 5> tchargeBins[16];
// ratio
// offset 1476
scaled_channel<uint8_t, 100, 1> tchargeValues[16];
// Fixed timing, useful for TDC testing
// deg
// offset 1492
float fixedTiming;
// MAP voltage for low point
// v
// offset 1496
float mapLowValueVoltage;
// MAP voltage for low point
// v
// offset 1500
float mapHighValueVoltage;
// EGO value correction
// value
// offset 1504
float egoValueShift;
// VVT output solenoid pin for this cam
// offset 1508
output_pin_e vvtPins[CAM_INPUTS_COUNT];
// This is the IAC position during cranking, some engines start better if given more air during cranking to improve cylinder filling.
// percent
// offset 1516
int crankingIACposition;
// offset 1520
float tChargeMinRpmMinTps;
// offset 1524
float tChargeMinRpmMaxTps;
// offset 1528
float tChargeMaxRpmMinTps;
// offset 1532
float tChargeMaxRpmMaxTps;
// offset 1536
pwm_freq_t vvtOutputFrequency;
// Minimim timing advance allowed. No spark on any cylinder will ever fire after this angle BTDC. For example, setting -10 here means no spark ever fires later than 10 deg ATDC. Note that this only concerns the primary spark: any trailing sparks or multispark may violate this constraint.
// deg BTDC
// offset 1538
int8_t minimumIgnitionTiming;
// Maximum timing advance allowed. No spark on any cylinder will ever fire before this angle BTDC. For example, setting 45 here means no spark ever fires earlier than 45 deg BTDC
// deg BTDC
// offset 1539
int8_t maximumIgnitionTiming;
// Hz
// offset 1540
int alternatorPwmFrequency;
// offset 1544
vvt_mode_e vvtMode[CAMS_PER_BANK];
// Additional idle % when fan #2 is active
// %
// offset 1546
uint8_t fan2ExtraIdle;
// Delay to allow fuel pressure to build before firing the priming pulse.
// sec
// offset 1547
scaled_channel<uint8_t, 100, 1> primingDelay;
// offset 1548
adc_channel_e auxAnalogInputs[LUA_ANALOG_INPUT_COUNT];
// offset 1556
output_pin_e trailingCoilPins[MAX_CYLINDER_COUNT];
// offset 1580
tle8888_mode_e tle8888mode;
// offset 1581
pin_output_mode_e LIS302DLCsPinMode;
// None = I have a MAP-referenced fuel pressure regulator
// Fixed rail pressure = I have an atmosphere-referenced fuel pressure regulator (returnless, typically)
// Sensed rail pressure = I have a fuel pressure sensor
// offset 1582
injector_compensation_mode_e injectorCompensationMode;
// offset 1583
pin_output_mode_e fan2PinMode;
// This is the pressure at which your injector flow is known.
// For example if your injectors flow 400cc/min at 3.5 bar, enter 350kpa here.
// kPa
// offset 1584
float fuelReferencePressure;
// Fuel multiplier (enrichment) immediately after engine start
// mult
// offset 1588
float postCrankingFactor;
// Time over which to taper out after start enrichment
// seconds
// offset 1592
float postCrankingDurationSec;
// offset 1596
ThermistorConf auxTempSensor1;
// offset 1628
ThermistorConf auxTempSensor2;
// Deg
// offset 1660
int16_t knockSamplingDuration;
// Hz
// offset 1662
int16_t etbFreq;
// offset 1664
pid_s etbWastegatePid;
// For micro-stepping, make sure that PWM frequency (etbFreq) is high enough
// offset 1684
stepper_num_micro_steps_e stepperNumMicroSteps;
// Use to limit the current when the stepper motor is idle, not moving (100% = no limit)
// %
// offset 1685
uint8_t stepperMinDutyCycle;
// Use to limit the max.current through the stepper motor (100% = no limit)
// %
// offset 1686
uint8_t stepperMaxDutyCycle;
// offset 1687
spi_device_e sdCardSpiDevice;
// per-cylinder timing correction
// deg
// offset 1688
angle_t timing_offset_cylinder[MAX_CYLINDER_COUNT];
// seconds
// offset 1736
float idlePidActivationTime;
// offset 1740
pin_mode_e spi1SckMode;
// Modes count be used for 3v<>5v integration using pull-ups/pull-downs etc.
// offset 1741
pin_mode_e spi1MosiMode;
// offset 1742
pin_mode_e spi1MisoMode;
// offset 1743
pin_mode_e spi2SckMode;
// offset 1744
pin_mode_e spi2MosiMode;
// offset 1745
pin_mode_e spi2MisoMode;
// offset 1746
pin_mode_e spi3SckMode;
// offset 1747
pin_mode_e spi3MosiMode;
// offset 1748
pin_mode_e spi3MisoMode;
// offset 1749
pin_output_mode_e stepperEnablePinMode;
// ResetB
// offset 1750
Gpio mc33816_rstb;
// offset 1752
Gpio mc33816_driven;
// Brake pedal switch
// offset 1754
switch_input_pin_e brakePedalPin;
// offset 1756
pin_input_mode_e brakePedalPinMode;
// offset 1757
tChargeMode_e tChargeMode;
// offset 1758
pin_input_mode_e tcuUpshiftButtonPinMode;
// offset 1759
pin_input_mode_e tcuDownshiftButtonPinMode;
// VVT output PID
// TODO: rename to vvtPid
// offset 1760
pid_s auxPid[CAMS_PER_BANK];
// offset 1800
float injectorCorrectionPolynomial[8];
// C
// offset 1832
int8_t primeBins[8];
// offset 1840
linear_sensor_s oilPressure;
// offset 1860
output_pin_e fan2Pin;
// Cooling fan turn-on temperature threshold, in Celsius
// deg C
// offset 1862
uint8_t fan2OnTemperature;
// Cooling fan turn-off temperature threshold, in Celsius
// deg C
// offset 1863
uint8_t fan2OffTemperature;
// offset 1864
Gpio stepperEnablePin;
// offset 1866
Gpio tle8888_cs;
// offset 1868
pin_output_mode_e tle8888_csPinMode;
// offset 1869
can_vss_nbc_e canVssNbcType;
// offset 1870
Gpio mc33816_cs;
// hz
// offset 1872
float auxFrequencyFilter;
// RPM
// offset 1876
int16_t vvtControlMinRpm;
// offset 1878
brain_input_pin_e sentInputPins[SENT_INPUT_COUNT];
// %
// offset 1880
int8_t launchFuelAdderPercent;
// Time required to detect a stuck throttle.
// sec
// offset 1881
scaled_channel<uint8_t, 50, 1> etbJamTimeout;
// By the way ETB PID runs at 500hz, length in 1/500 of second here.
// offset 1882
uint16_t etbExpAverageLength;
// This sets the RPM above which fuel cut is active.
// rpm
// offset 1884
int16_t coastingFuelCutRpmHigh;
// This sets the RPM below which fuel cut is deactivated, this prevents jerking or issues transitioning to idle
// rpm
// offset 1886
int16_t coastingFuelCutRpmLow;
// Throttle position below which fuel cut is active. With an electronic throttle enabled, this checks against pedal position.
// %
// offset 1888
int16_t coastingFuelCutTps;
// Fuel cutoff is disabled when the engine is cold.
// C
// offset 1890
int16_t coastingFuelCutClt;
// Increases PID reaction for RPM<target by adding extra percent to PID-error
// %
// offset 1892
int16_t pidExtraForLowRpm;
// MAP value above which fuel injection is re-enabled.
// kPa
// offset 1894
int16_t coastingFuelCutMap;
// offset 1896
linear_sensor_s highPressureFuel;
// offset 1916
linear_sensor_s lowPressureFuel;
// C
// offset 1936
int8_t cltRevLimitRpmBins[CLT_LIMITER_CURVE_SIZE];
// RPM
// offset 1940
uint16_t cltRevLimitRpm[CLT_LIMITER_CURVE_SIZE];
// offset 1948
gppwm_note_t scriptCurveName[SCRIPT_CURVE_COUNT];
// offset 2044
gppwm_note_t scriptTableName[SCRIPT_TABLE_COUNT];
// offset 2108
gppwm_note_t scriptSettingName[SCRIPT_SETTING_COUNT];
// Heat transfer coefficient at zero flow.
// 0 means the air charge is fully heated to the same temperature as CLT.
// 1 means the air charge gains no heat, and enters the cylinder at the temperature measured by IAT.
// offset 2236
float tChargeAirCoefMin;
// Heat transfer coefficient at high flow, as defined by "max air flow".
// 0 means the air charge is fully heated to the same temperature as CLT.
// 1 means the air charge gains no heat, and enters the cylinder at the temperature measured by IAT.
// offset 2240
float tChargeAirCoefMax;
// High flow point for heat transfer estimation.
// Set this to perhaps 50-75% of your maximum airflow at wide open throttle.
// kg/h
// offset 2244
float tChargeAirFlowMax;
// Maximum allowed rate of increase allowed for the estimated charge temperature
// deg/sec
// offset 2248
float tChargeAirIncrLimit;
// Maximum allowed rate of decrease allowed for the estimated charge temperature
// deg/sec
// offset 2252
float tChargeAirDecrLimit;
// iTerm min value
// offset 2256
int16_t etb_iTermMin;
// iTerm max value
// offset 2258
int16_t etb_iTermMax;
// offset 2260
pid_s idleTimingPid;
// By the way ETB PID runs at 500hz, length in 1/500 of second here.
// offset 2280
int16_t etbRocExpAverageLength;
// A delay in cycles between fuel-enrich. portions
// cycles
// offset 2282
int16_t tpsAccelFractionPeriod;
// A fraction divisor: 1 or less = entire portion at once, or split into diminishing fractions
// coef
// offset 2284
float tpsAccelFractionDivisor;
// offset 2288
spi_device_e tle8888spiDevice;
// offset 2289
spi_device_e mc33816spiDevice;
// iTerm min value
// offset 2290
int16_t idlerpmpid_iTermMin;
// offset 2292
spi_device_e tle6240spiDevice;
// Stoichiometric ratio for your primary fuel. When Flex Fuel is enabled, this value is used when the Flex Fuel sensor indicates E0.
// E0 = 14.7
// E10 = 14.1
// E85 = 9.9
// E100 = 9.0
// :1
// offset 2293
scaled_channel<uint8_t, 10, 1> stoichRatioPrimary;
// iTerm max value
// offset 2294
int16_t idlerpmpid_iTermMax;
// This sets the range of the idle control on the ETB. At 100% idle position, the value specified here sets the base ETB position.
// %
// offset 2296
float etbIdleThrottleRange;
// Select which fuel correction bank this cylinder belongs to. Group cylinders that share the same O2 sensor
// offset 2300
uint8_t cylinderBankSelect[MAX_CYLINDER_COUNT];
// mg
// offset 2312
scaled_channel<uint8_t, 1, 5> primeValues[8];
// Trigger comparator center point voltage
// V
// offset 2320
scaled_channel<uint8_t, 50, 1> triggerCompCenterVolt;
// Trigger comparator hysteresis voltage (Min)
// V
// offset 2321
scaled_channel<uint8_t, 50, 1> triggerCompHystMin;
// Trigger comparator hysteresis voltage (Max)
// V
// offset 2322
scaled_channel<uint8_t, 50, 1> triggerCompHystMax;
// VR-sensor saturation RPM
// RPM
// offset 2323
scaled_channel<uint8_t, 1, 50> triggerCompSensorSatRpm;
// offset 2324
gppwm_channel gppwm[GPPWM_CHANNELS];
// Boost Current
// mA
// offset 2756
uint16_t mc33_i_boost;
// Peak Current
// mA
// offset 2758
uint16_t mc33_i_peak;
// Hold Current
// mA
// offset 2760
uint16_t mc33_i_hold;
// Maximum allowed boost phase time. If the injector current doesn't reach the threshold before this time elapses, it is assumed that the injector is missing or has failed open circuit.
// us
// offset 2762
uint16_t mc33_t_max_boost;
// us
// offset 2764
uint16_t mc33_t_peak_off;
// Peak phase duration
// us
// offset 2766
uint16_t mc33_t_peak_tot;
// us
// offset 2768
uint16_t mc33_t_bypass;
// us
// offset 2770
uint16_t mc33_t_hold_off;
// Hold phase duration
// us
// offset 2772
uint16_t mc33_t_hold_tot;
// offset 2774
pin_output_mode_e tcu_solenoid_mode[TCU_SOLENOID_COUNT];
// Knock sensor output knock detection threshold depending on current RPM.
// dB
// offset 2780
scaled_channel<int8_t, 2, 1> knockBaseNoise[ENGINE_NOISE_CURVE_SIZE];
// ratio
// offset 2796
float triggerGapOverrideFrom[GAP_TRACKING_LENGTH];
// ratio
// offset 2868
float triggerGapOverrideTo[GAP_TRACKING_LENGTH];
// Below this RPM, use camshaft information to synchronize the crank's position for full sequential operation. Use this if your cam sensor does weird things at high RPM. Set to 0 to disable, and always use cam to help sync crank.
// rpm
// offset 2940
scaled_channel<uint8_t, 1, 50> maxCamPhaseResolveRpm;
// Delay before cutting fuel. Set to 0 to cut immediately with no delay. May cause rumbles and pops out of your exhaust...
// sec
// offset 2941
scaled_channel<uint8_t, 10, 1> dfcoDelay;
// Delay before engaging the AC compressor. Set to 0 to engage immediately with no delay. Use this to prevent bogging at idle when AC engages.
// sec
// offset 2942
scaled_channel<uint8_t, 10, 1> acDelay;
// offset 2943
pin_input_mode_e acSwitchMode;
// mg
// offset 2944
scaled_channel<uint16_t, 1000, 1> fordInjectorSmallPulseBreakPoint;
// multiplier
// offset 2946
scaled_channel<uint8_t, 50, 1> tpsTspCorrValues[TPS_TPS_ACCEL_CLT_CORR_TABLE];
// %
// offset 2950
uint8_t etbJamIntegratorLimit;
// lobes/cam
// offset 2951
uint8_t hpfpCamLobes;
// offset 2952
hpfp_cam_e hpfpCam;
// Crank angle ATDC of first lobe peak
// deg
// offset 2953
uint8_t hpfpPeakPos;
// If the requested activation time is below this angle, don't bother running the pump
// deg
// offset 2954
uint8_t hpfpMinAngle;
// offset 2955
vin_number_t vinNumber;
// Size of the pump chamber in cc. Typical Bosch HDP5 has a 9.0mm diameter, typical BMW N* stroke is 4.4mm.
// cc
// offset 2972
scaled_channel<uint16_t, 1000, 1> hpfpPumpVolume;
// How long to keep the valve activated (in order to allow the pump to build pressure and keep the valve open on its own)
// deg
// offset 2974
uint8_t hpfpActivationAngle;
// offset 2975
uint8_t issFilterReciprocal;
// %/kPa
// offset 2976
scaled_channel<uint16_t, 1000, 1> hpfpPidP;
// %/kPa/lobe
// offset 2978
scaled_channel<uint16_t, 100000, 1> hpfpPidI;
// The fastest rate the target pressure can be reduced by. This is because HPFP have no way to bleed off pressure other than injecting fuel.
// kPa/s
// offset 2980
uint16_t hpfpTargetDecay;
// %
// offset 2982
scaled_channel<uint8_t, 2, 1> hpfpLobeProfileQuantityBins[HPFP_LOBE_PROFILE_SIZE];
// deg
// offset 2998
scaled_channel<uint8_t, 2, 1> hpfpLobeProfileAngle[HPFP_LOBE_PROFILE_SIZE];
// volts
// offset 3014
uint8_t hpfpDeadtimeVoltsBins[HPFP_DEADTIME_SIZE];
// ms
// offset 3022
scaled_channel<uint16_t, 1000, 1> hpfpDeadtimeMS[HPFP_DEADTIME_SIZE];
// kPa
// offset 3038
uint16_t hpfpTarget[HPFP_TARGET_SIZE][HPFP_TARGET_SIZE];
// load
// offset 3238
scaled_channel<uint16_t, 10, 1> hpfpTargetLoadBins[HPFP_TARGET_SIZE];
// RPM
// offset 3258
scaled_channel<uint8_t, 1, 50> hpfpTargetRpmBins[HPFP_TARGET_SIZE];
// %
// offset 3268
int8_t hpfpCompensation[HPFP_COMPENSATION_SIZE][HPFP_COMPENSATION_SIZE];
// cc/lobe
// offset 3368
scaled_channel<uint16_t, 1000, 1> hpfpCompensationLoadBins[HPFP_COMPENSATION_SIZE];
// RPM
// offset 3388
scaled_channel<uint8_t, 1, 50> hpfpCompensationRpmBins[HPFP_COMPENSATION_SIZE];
// offset 3398
output_pin_e stepper_raw_output[4];
// ratio
// offset 3406
scaled_channel<uint16_t, 100, 1> gearRatio[GEARS_COUNT];
// We need to give engine time to build oil pressure without diverting it to VVT
// ms
// offset 3422
uint16_t vvtActivationDelayMs;
// deg C
// offset 3424
int8_t wwCltBins[WWAE_TABLE_SIZE];
// offset 3432
scaled_channel<uint8_t, 100, 1> wwTauCltValues[WWAE_TABLE_SIZE];
// offset 3440
scaled_channel<uint8_t, 100, 1> wwBetaCltValues[WWAE_TABLE_SIZE];
// kPa
// offset 3448
int8_t wwMapBins[WWAE_TABLE_SIZE];
// offset 3456
scaled_channel<uint8_t, 100, 1> wwTauMapValues[WWAE_TABLE_SIZE];
// offset 3464
scaled_channel<uint8_t, 100, 1> wwBetaMapValues[WWAE_TABLE_SIZE];
// offset 3472
GearControllerMode gearControllerMode;
// offset 3473
TransmissionControllerMode transmissionControllerMode;
// deg
// offset 3474
uint16_t acrDisablePhase;
// offset 3476
linear_sensor_s auxLinear1;
// offset 3496
linear_sensor_s auxLinear2;
// offset 3516
output_pin_e tcu_tcc_onoff_solenoid;
// offset 3518
pin_output_mode_e tcu_tcc_onoff_solenoid_mode;
// offset 3519
pin_output_mode_e tcu_tcc_pwm_solenoid_mode;
// offset 3520
output_pin_e tcu_tcc_pwm_solenoid;
// offset 3522
pwm_freq_t tcu_tcc_pwm_solenoid_freq;
// offset 3524
output_pin_e tcu_pc_solenoid_pin;
// offset 3526
pin_output_mode_e tcu_pc_solenoid_pin_mode;
// offset 3527
pin_output_mode_e tcu_32_solenoid_pin_mode;
// offset 3528
pwm_freq_t tcu_pc_solenoid_freq;
// offset 3530
output_pin_e tcu_32_solenoid_pin;
// offset 3532
pwm_freq_t tcu_32_solenoid_freq;
// offset 3534
output_pin_e acrPin2;
// %
// offset 3536
float etbMinimumPosition;
// offset 3540
uint16_t tuneHidingKey;
// offset 3542
SentEtbType sentEtbType;
// offset 3543
fuel_pressure_sensor_mode_e fuelPressureSensorMode;
// offset 3544
Gpio luaDigitalInputPins[LUA_DIGITAL_INPUT_COUNT];
// RPM
// offset 3560
scaled_channel<uint8_t, 1, 50> tpsTspCorrValuesBins[TPS_TPS_ACCEL_CLT_CORR_TABLE];
// rpm
// offset 3564
int16_t ALSMinRPM;
// rpm
// offset 3566
int16_t ALSMaxRPM;
// sec
// offset 3568
int16_t ALSMaxDuration;
// C
// offset 3570
int8_t ALSMinCLT;
// C
// offset 3571
int8_t ALSMaxCLT;
// offset 3572
uint8_t alsMinTimeBetween;
// offset 3573
uint8_t alsEtbPosition;
// %
// offset 3574
uint8_t acRelayAlternatorDutyAdder;
// deg
// offset 3575
uint8_t instantRpmRange;
// %
// offset 3576
int ALSIdleAdd;
// %
// offset 3580
int ALSEtbAdd;
// offset 3584
int ALSSkipRatio;
// %
// offset 3588
uint8_t ALSMaxDriverThrottleIntent;
// offset 3589
pin_input_mode_e ALSActivatePinMode;
// For Ford TPS, use 53%. For Toyota ETCS-i, use ~65%
// %
// offset 3590
scaled_channel<uint8_t, 2, 1> tpsSecondaryMaximum;
// For Toyota ETCS-i, use ~69%
// %
// offset 3591
scaled_channel<uint8_t, 2, 1> ppsSecondaryMaximum;
// offset 3592
pin_input_mode_e luaDigitalInputPinModes[LUA_DIGITAL_INPUT_COUNT];
// If the hard limit is 7200rpm and hysteresis is 200rpm, then when the ECU sees 7200rpm, fuel/ign will cut, and stay cut until 7000rpm (7200-200) is reached
// RPM
// offset 3600
scaled_channel<uint8_t, 1, 10> rpmHardLimitHyst;
// How many test bench pulses do you want
// offset 3601
uint8_t ignTestCount;
// Time between bench test pulses
// ms
// offset 3602
scaled_channel<uint8_t, 1, 5> ignTestOffTime;
// offset 3603
uint8_t alignmentFill_at_3603[1];
// Scale the reported vehicle speed value from CAN. Example: Parameter set to 1.1, CAN VSS reports 50kph, ECU will report 55kph instead.
// ratio
// offset 3604
scaled_channel<uint16_t, 10000, 1> canVssScaling;
// offset 3606
uint8_t alignmentFill_at_3606[2];
// offset 3608
ThermistorConf oilTempSensor;
// offset 3640
ThermistorConf fuelTempSensor;
// offset 3672
ThermistorConf ambientTempSensor;
// offset 3704
ThermistorConf compressorDischargeTemperature;
// Place the sensor before the throttle, but after any turbocharger/supercharger and intercoolers if fitted. Uses the same calibration as the MAP sensor.
// offset 3736
adc_channel_e throttleInletPressureChannel;
// Place the sensor after the turbocharger/supercharger, but before any intercoolers if fitted. Uses the same calibration as the MAP sensor.
// offset 3737
adc_channel_e compressorDischargePressureChannel;
// units
// offset 3738
uint8_t mainUnusedEnd[254];
};
static_assert(sizeof(engine_configuration_s) == 3992);
struct cyl_trim_s {
// offset 0
scaled_channel<int8_t, 5, 1> table[TRIM_SIZE][TRIM_SIZE];
};
static_assert(sizeof(cyl_trim_s) == 16);
struct blend_table_s {
// offset 0
scaled_channel<int16_t, 10, 1> table[8][8];
// Load
// offset 128
uint16_t loadBins[8];
// RPM
// offset 144
uint16_t rpmBins[8];
// offset 160
gppwm_channel_e blendParameter;
// offset 161
uint8_t alignmentFill_at_161[1];
// offset 162
scaled_channel<int16_t, 10, 1> blendBins[8];
// %
// offset 178
scaled_channel<uint8_t, 2, 1> blendValues[8];
// offset 186
uint8_t alignmentFill_at_186[2];
};
static_assert(sizeof(blend_table_s) == 188);
struct persistent_config_s {
// offset 0
engine_configuration_s engineConfiguration;
// target TPS value, 0 to 100%
// TODO: use int8 data date once we template interpolation method
// target TPS position
// offset 3992
float etbBiasBins[ETB_BIAS_CURVE_LENGTH];
// PWM bias, 0 to 100%
// ETB duty cycle bias
// offset 4024
float etbBiasValues[ETB_BIAS_CURVE_LENGTH];
// %
// offset 4056
scaled_channel<uint8_t, 20, 1> iacPidMultTable[IAC_PID_MULT_SIZE][IAC_PID_MULT_SIZE];
// Load
// offset 4120
uint8_t iacPidMultLoadBins[IAC_PID_MULT_SIZE];
// RPM
// offset 4128
scaled_channel<uint8_t, 1, 10> iacPidMultRpmBins[IAC_PID_MULT_SIZE];
// On Single Coil or Wasted Spark setups you have to lower dwell at high RPM
// RPM
// offset 4136
uint16_t sparkDwellRpmBins[DWELL_CURVE_SIZE];
// ms
// offset 4152
scaled_channel<uint16_t, 100, 1> sparkDwellValues[DWELL_CURVE_SIZE];
// CLT-based target RPM for automatic idle controller
// C
// offset 4168
scaled_channel<int8_t, 1, 2> cltIdleRpmBins[CLT_CURVE_SIZE];
// See idleRpmPid
// RPM
// offset 4184
scaled_channel<uint8_t, 1, 20> cltIdleRpm[CLT_CURVE_SIZE];
// CLT-based timing correction
// C
// offset 4200
float cltTimingBins[CLT_TIMING_CURVE_SIZE];
// degree
// offset 4232
float cltTimingExtra[CLT_TIMING_CURVE_SIZE];
// x
// offset 4264
float scriptCurve1Bins[SCRIPT_CURVE_16];
// y
// offset 4328
float scriptCurve1[SCRIPT_CURVE_16];
// x
// offset 4392
float scriptCurve2Bins[SCRIPT_CURVE_16];
// y
// offset 4456
float scriptCurve2[SCRIPT_CURVE_16];
// x
// offset 4520
float scriptCurve3Bins[SCRIPT_CURVE_8];
// y
// offset 4552
float scriptCurve3[SCRIPT_CURVE_8];
// x
// offset 4584
float scriptCurve4Bins[SCRIPT_CURVE_8];
// y
// offset 4616
float scriptCurve4[SCRIPT_CURVE_8];
// x
// offset 4648
float scriptCurve5Bins[SCRIPT_CURVE_8];
// y
// offset 4680
float scriptCurve5[SCRIPT_CURVE_8];
// x
// offset 4712
float scriptCurve6Bins[SCRIPT_CURVE_8];
// y
// offset 4744
float scriptCurve6[SCRIPT_CURVE_8];
// kPa
// offset 4776
float baroCorrPressureBins[BARO_CORR_SIZE];
// RPM
// offset 4792
float baroCorrRpmBins[BARO_CORR_SIZE];
// ratio
// offset 4808
float baroCorrTable[BARO_CORR_SIZE][BARO_CORR_SIZE];
// Cranking fuel correction coefficient based on TPS
// Ratio
// offset 4872
float crankingTpsCoef[CRANKING_CURVE_SIZE];
// %
// offset 4904
float crankingTpsBins[CRANKING_CURVE_SIZE];
// Optional timing advance table for Cranking (see useSeparateAdvanceForCranking)
// RPM
// offset 4936
uint16_t crankingAdvanceBins[CRANKING_ADVANCE_CURVE_SIZE];
// Optional timing advance table for Cranking (see useSeparateAdvanceForCranking)
// deg
// offset 4944
scaled_channel<int16_t, 100, 1> crankingAdvance[CRANKING_ADVANCE_CURVE_SIZE];
// RPM-based idle position for coasting
// RPM
// offset 4952
scaled_channel<uint8_t, 1, 100> iacCoastingRpmBins[CLT_CURVE_SIZE];
// RPM-based idle position for coasting
// %
// offset 4968
scaled_channel<uint8_t, 2, 1> iacCoasting[CLT_CURVE_SIZE];
// C
// offset 4984
float afterstartCoolantBins[AFTERSTART_HOLD_CURVE_SIZE];
// Seconds
// offset 5016
float afterstartHoldTime[AFTERSTART_HOLD_CURVE_SIZE];
// %
// offset 5048
float afterstartEnrich[AFTERSTART_ENRICH_CURVE_SIZE];
// Seconds
// offset 5080
float afterstartDecayTime[AFTERSTART_DECAY_CURVE_SIZE];
// offset 5112
scaled_channel<uint8_t, 2, 1> boostTableOpenLoop[BOOST_RPM_COUNT][BOOST_LOAD_COUNT];
// RPM
// offset 5176
scaled_channel<uint8_t, 1, 100> boostRpmBins[BOOST_RPM_COUNT];
// offset 5184
scaled_channel<uint8_t, 1, 2> boostTableClosedLoop[BOOST_RPM_COUNT][BOOST_LOAD_COUNT];
// %
// offset 5248
uint8_t boostTpsBins[BOOST_LOAD_COUNT];
// %
// offset 5256
uint8_t pedalToTpsTable[PEDAL_TO_TPS_SIZE][PEDAL_TO_TPS_SIZE];
// %
// offset 5320
uint8_t pedalToTpsPedalBins[PEDAL_TO_TPS_SIZE];
// RPM
// offset 5328
scaled_channel<uint8_t, 1, 100> pedalToTpsRpmBins[PEDAL_TO_TPS_SIZE];
// CLT-based cranking position multiplier for simple manual idle controller
// C
// offset 5336
float cltCrankingCorrBins[CLT_CRANKING_CURVE_SIZE];
// CLT-based cranking position multiplier for simple manual idle controller
// %
// offset 5368
float cltCrankingCorr[CLT_CRANKING_CURVE_SIZE];
// Optional timing advance table for Idle (see useSeparateAdvanceForIdle)
// RPM
// offset 5400
scaled_channel<uint8_t, 1, 50> idleAdvanceBins[IDLE_ADVANCE_CURVE_SIZE];
// Optional timing advance table for Idle (see useSeparateAdvanceForIdle)
// deg
// offset 5408
float idleAdvance[IDLE_ADVANCE_CURVE_SIZE];
// RPM
// offset 5440
scaled_channel<uint8_t, 1, 10> idleVeRpmBins[IDLE_VE_SIZE];
// load
// offset 5444
uint8_t idleVeLoadBins[IDLE_VE_SIZE];
// %
// offset 5448
scaled_channel<uint16_t, 10, 1> idleVeTable[IDLE_VE_SIZE][IDLE_VE_SIZE];
// offset 5480
lua_script_t luaScript;
// C
// offset 13480
float cltFuelCorrBins[CLT_CURVE_SIZE];
// ratio
// offset 13544
float cltFuelCorr[CLT_CURVE_SIZE];
// C
// offset 13608
float iatFuelCorrBins[IAT_CURVE_SIZE];
// ratio
// offset 13672
float iatFuelCorr[IAT_CURVE_SIZE];
// ratio
// offset 13736
float crankingFuelCoef[CRANKING_CURVE_SIZE];
// C
// offset 13768
float crankingFuelBins[CRANKING_CURVE_SIZE];
// ratio
// offset 13800
float crankingCycleCoef[CRANKING_CURVE_SIZE];
// counter
// offset 13832
float crankingCycleBins[CRANKING_CURVE_SIZE];
// CLT-based idle position multiplier for simple manual idle controller
// C
// offset 13864
float cltIdleCorrBins[CLT_CURVE_SIZE];
// CLT-based idle position multiplier for simple manual idle controller
// ratio
// offset 13928
float cltIdleCorr[CLT_CURVE_SIZE];
// Also known as MAF transfer function.
// kg/hour value.
// By the way 2.081989116 kg/h = 1 ft3/m
// kg/hour
// offset 13992
float mafDecoding[MAF_DECODING_COUNT];
// V
// offset 15016
float mafDecodingBins[MAF_DECODING_COUNT];
// deg
// offset 16040
scaled_channel<int8_t, 10, 1> ignitionIatCorrTable[8][8];
// C
// offset 16104
int8_t ignitionIatCorrTempBins[8];
// Load
// offset 16112
scaled_channel<uint8_t, 1, 5> ignitionIatCorrLoadBins[8];
// deg
// offset 16120
int16_t injectionPhase[IGN_RPM_COUNT][IGN_LOAD_COUNT];
// Load
// offset 16632
uint16_t injPhaseLoadBins[FUEL_LOAD_COUNT];
// RPM
// offset 16664
uint16_t injPhaseRpmBins[FUEL_RPM_COUNT];
// onoff
// offset 16696
uint8_t tcuSolenoidTable[TCU_SOLENOID_COUNT][TCU_GEAR_COUNT];
// kPa
// offset 16756
scaled_channel<uint16_t, 100, 1> mapEstimateTable[FUEL_RPM_COUNT][FUEL_LOAD_COUNT];
// % TPS
// offset 17268
scaled_channel<uint16_t, 100, 1> mapEstimateTpsBins[FUEL_LOAD_COUNT];
// RPM
// offset 17300
uint16_t mapEstimateRpmBins[FUEL_RPM_COUNT];
// value
// offset 17332
int8_t vvtTable1[SCRIPT_TABLE_8][SCRIPT_TABLE_8];
// L
// offset 17396
uint16_t vvtTable1LoadBins[SCRIPT_TABLE_8];
// RPM
// offset 17412
uint16_t vvtTable1RpmBins[SCRIPT_TABLE_8];
// value
// offset 17428
int8_t vvtTable2[SCRIPT_TABLE_8][SCRIPT_TABLE_8];
// L
// offset 17492
uint16_t vvtTable2LoadBins[SCRIPT_TABLE_8];
// RPM
// offset 17508
uint16_t vvtTable2RpmBins[SCRIPT_TABLE_8];
// deg
// offset 17524
scaled_channel<int16_t, 10, 1> ignitionTable[IGN_RPM_COUNT][IGN_LOAD_COUNT];
// Load
// offset 18036
uint16_t ignitionLoadBins[IGN_LOAD_COUNT];
// RPM
// offset 18068
uint16_t ignitionRpmBins[IGN_RPM_COUNT];
// %
// offset 18100
scaled_channel<uint16_t, 10, 1> veTable[FUEL_RPM_COUNT][FUEL_LOAD_COUNT];
// kPa
// offset 18612
uint16_t veLoadBins[FUEL_LOAD_COUNT];
// RPM
// offset 18644
uint16_t veRpmBins[FUEL_RPM_COUNT];
// lambda
// offset 18676
scaled_channel<uint8_t, 147, 1> lambdaTable[FUEL_RPM_COUNT][FUEL_LOAD_COUNT];
// offset 18932
uint16_t lambdaLoadBins[FUEL_LOAD_COUNT];
// RPM
// offset 18964
uint16_t lambdaRpmBins[FUEL_RPM_COUNT];
// value
// offset 18996
float tpsTpsAccelTable[TPS_TPS_ACCEL_TABLE][TPS_TPS_ACCEL_TABLE];
// from
// offset 19252
float tpsTpsAccelFromRpmBins[TPS_TPS_ACCEL_TABLE];
// to
// offset 19284
float tpsTpsAccelToRpmBins[TPS_TPS_ACCEL_TABLE];
// value
// offset 19316
float scriptTable1[SCRIPT_TABLE_8][SCRIPT_TABLE_8];
// L
// offset 19572
int16_t scriptTable1LoadBins[SCRIPT_TABLE_8];
// RPM
// offset 19588
int16_t scriptTable1RpmBins[SCRIPT_TABLE_8];
// value
// offset 19604
uint8_t scriptTable2[SCRIPT_TABLE_8][SCRIPT_TABLE_8];
// L
// offset 19668
int16_t scriptTable2LoadBins[SCRIPT_TABLE_8];
// RPM
// offset 19684
int16_t scriptTable2RpmBins[SCRIPT_TABLE_8];
// value
// offset 19700
uint8_t scriptTable3[SCRIPT_TABLE_8][SCRIPT_TABLE_8];
// L
// offset 19764
int16_t scriptTable3LoadBins[SCRIPT_TABLE_8];
// RPM
// offset 19780
int16_t scriptTable3RpmBins[SCRIPT_TABLE_8];
// value
// offset 19796
uint8_t scriptTable4[SCRIPT_TABLE_8][SCRIPT_TABLE_8];
// L
// offset 19860
int16_t scriptTable4LoadBins[SCRIPT_TABLE_8];
// RPM
// offset 19876
int16_t scriptTable4RpmBins[SCRIPT_TABLE_8];
// offset 19892
uint16_t ignTrimLoadBins[TRIM_SIZE];
// rpm
// offset 19900
uint16_t ignTrimRpmBins[TRIM_SIZE];
// offset 19908
cyl_trim_s ignTrims[12];
// offset 20100
uint16_t fuelTrimLoadBins[TRIM_SIZE];
// rpm
// offset 20108
uint16_t fuelTrimRpmBins[TRIM_SIZE];
// offset 20116
cyl_trim_s fuelTrims[12];
// ratio
// offset 20308
scaled_channel<uint16_t, 100, 1> crankingFuelCoefE100[CRANKING_CURVE_SIZE];
// Airmass
// offset 20324
scaled_channel<uint8_t, 50, 1> tcu_pcAirmassBins[TCU_MAGIC_SIZE];
// %
// offset 20332
uint8_t tcu_pcValsR[TCU_MAGIC_SIZE];
// %
// offset 20340
uint8_t tcu_pcValsN[TCU_MAGIC_SIZE];
// %
// offset 20348
uint8_t tcu_pcVals1[TCU_MAGIC_SIZE];
// %
// offset 20356
uint8_t tcu_pcVals2[TCU_MAGIC_SIZE];
// %
// offset 20364
uint8_t tcu_pcVals3[TCU_MAGIC_SIZE];
// %
// offset 20372
uint8_t tcu_pcVals4[TCU_MAGIC_SIZE];
// %
// offset 20380
uint8_t tcu_pcVals12[TCU_MAGIC_SIZE];
// %
// offset 20388
uint8_t tcu_pcVals23[TCU_MAGIC_SIZE];
// %
// offset 20396
uint8_t tcu_pcVals34[TCU_MAGIC_SIZE];
// %
// offset 20404
uint8_t tcu_pcVals21[TCU_MAGIC_SIZE];
// %
// offset 20412
uint8_t tcu_pcVals32[TCU_MAGIC_SIZE];
// %
// offset 20420
uint8_t tcu_pcVals43[TCU_MAGIC_SIZE];
// TPS
// offset 20428
uint8_t tcu_tccTpsBins[8];
// MPH
// offset 20436
uint8_t tcu_tccLockSpeed[8];
// MPH
// offset 20444
uint8_t tcu_tccUnlockSpeed[8];
// KPH
// offset 20452
uint8_t tcu_32SpeedBins[8];
// %
// offset 20460
uint8_t tcu_32Vals[8];
// %
// offset 20468
scaled_channel<int8_t, 10, 1> throttle2TrimTable[6][6];
// %
// offset 20504
uint8_t throttle2TrimTpsBins[6];
// RPM
// offset 20510
scaled_channel<uint8_t, 1, 100> throttle2TrimRpmBins[6];
// deg
// offset 20516
scaled_channel<uint8_t, 4, 1> maxKnockRetardTable[6][6];
// %
// offset 20552
uint8_t maxKnockRetardLoadBins[6];
// RPM
// offset 20558
scaled_channel<uint8_t, 1, 100> maxKnockRetardRpmBins[6];
// deg
// offset 20564
scaled_channel<int16_t, 10, 1> ALSTimingRetardTable[4][4];
// TPS
// offset 20596
uint16_t alsIgnRetardLoadBins[4];
// RPM
// offset 20604
uint16_t alsIgnRetardrpmBins[4];
// percent
// offset 20612
scaled_channel<int16_t, 10, 1> ALSFuelAdjustment[4][4];
// TPS
// offset 20644
uint16_t alsFuelAdjustmentLoadBins[4];
// RPM
// offset 20652
uint16_t alsFuelAdjustmentrpmBins[4];
// offset 20660
blend_table_s ignBlends[IGN_BLEND_COUNT];
// offset 21412
blend_table_s veBlends[VE_BLEND_COUNT];
// %
// offset 22164
scaled_channel<uint16_t, 10, 1> throttleEstimateEffectiveAreaBins[12];
// In units of g/s normalized to choked flow conditions
// g/s
// offset 22188
scaled_channel<uint16_t, 10, 1> throttleEstimateEffectiveAreaValues[12];
// offset 22212
blend_table_s boostOpenLoopBlends[BOOST_BLEND_COUNT];
// offset 22588
blend_table_s boostClosedLoopBlends[BOOST_BLEND_COUNT];
// lambda
// offset 22964
scaled_channel<uint8_t, 100, 1> lambdaMaxDeviationTable[4][4];
// offset 22980
uint16_t lambdaMaxDeviationLoadBins[4];
// RPM
// offset 22988
uint16_t lambdaMaxDeviationRpmBins[4];
};
static_assert(sizeof(persistent_config_s) == 22996);