openblt/Target/Source/HCS12/can.c

480 lines
21 KiB
C
Raw Normal View History

/************************************************************************************//**
* \file Source/HCS12/can.c
* \brief Bootloader CAN communication interface source file.
* \ingroup Target_HCS12
* \internal
*----------------------------------------------------------------------------------------
* C O P Y R I G H T
*----------------------------------------------------------------------------------------
* Copyright (c) 2013 by Feaser http://www.feaser.com All rights reserved
*
*----------------------------------------------------------------------------------------
* L I C E N S E
*----------------------------------------------------------------------------------------
* This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You have received a copy of the GNU General Public License along with OpenBLT. It
* should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy.
*
* \endinternal
****************************************************************************************/
/****************************************************************************************
* Include files
****************************************************************************************/
#include "boot.h" /* bootloader generic header */
#if (BOOT_COM_CAN_ENABLE > 0)
/****************************************************************************************
* Type definitions
****************************************************************************************/
/** \brief Structure type with the layout of a CAN reception message slot. */
typedef volatile struct
{
volatile blt_int8u idr[4]; /**< identifier register 0..3 */
volatile blt_int8u dsr[8]; /**< data segment register 0..7 */
volatile blt_int8u dlr; /**< data length register */
volatile blt_int8u dummy; /**< unused */
volatile blt_int16u tstamp; /**< timestamp register */
} tCanRxMsgSlot;
/** \brief Structure type with the layout of a CAN transmit message slot. */
typedef volatile struct
{
volatile blt_int8u idr[4]; /**< identifier register 0..3 */
volatile blt_int8u dsr[8]; /**< data segment register 0..7 */
volatile blt_int8u dlr; /**< data length register */
volatile blt_int8u tbpr; /**< transmit buffer priority register */
volatile blt_int16u tstamp; /**< timestamp register */
} tCanTxMsgSlot;
/** \brief Structure type with the layout of the CAN related control registers. */
typedef volatile struct
{
volatile blt_int8u cctl0; /**< control register 0 */
volatile blt_int8u cctl1; /**< control register 1 */
volatile blt_int8u cbtr0; /**< bus timing register 0 */
volatile blt_int8u cbtr1; /**< bus timing register 1 */
volatile blt_int8u crflg; /**< receiver flag register */
volatile blt_int8u crier; /**< receiver interrupt enable register */
volatile blt_int8u ctflg; /**< transmitter flag register */
volatile blt_int8u ctier; /**< transmitter interrupt enable register */
volatile blt_int8u ctarq; /**< transmitter message abort control */
volatile blt_int8u ctaak; /**< transmitter message abort control */
volatile blt_int8u ctbsel; /**< transmit buffer selection */
volatile blt_int8u cidac; /**< identifier acceptance control register */
volatile blt_int8u dummy1[2]; /**< reserved (2) */
volatile blt_int8u crxerr; /**< receive error counter */
volatile blt_int8u ctxerr; /**< transmit error counter */
volatile blt_int8u cidar0; /**< identifier acceptance register 0 */
volatile blt_int8u cidar1; /**< identifier acceptance register 1 */
volatile blt_int8u cidar2; /**< identifier acceptance register 2 */
volatile blt_int8u cidar3; /**< identifier acceptance register 3 */
volatile blt_int8u cidmr0; /**< identifier mask register 0 */
volatile blt_int8u cidmr1; /**< identifier mask register 1 */
volatile blt_int8u cidmr2; /**< identifier mask register 2 */
volatile blt_int8u cidmr3; /**< identifier mask register 3 */
volatile blt_int8u cidar4; /**< identifier acceptance register 4 */
volatile blt_int8u cidar5; /**< identifier acceptance register 5 */
volatile blt_int8u cidar6; /**< identifier acceptance register 6 */
volatile blt_int8u cidar7; /**< identifier acceptance register 7 */
volatile blt_int8u cidmr4; /**< identifier mask register 4 */
volatile blt_int8u cidmr5; /**< identifier mask register 5 */
volatile blt_int8u cidmr6; /**< identifier mask register 6 */
volatile blt_int8u cidmr7; /**< identifier mask register 7 */
volatile tCanRxMsgSlot rxSlot; /**< foreground receive message slot */
volatile tCanTxMsgSlot txSlot; /**< foreground transmit message slot */
} tCanRegs;
/** \brief Structure type with the layout of the CAN bus timing registers. */
typedef struct
{
blt_int8u tseg1; /**< CAN time segment 1 */
blt_int8u tseg2; /**< CAN time segment 2 */
} tCanBusTiming;
/****************************************************************************************
* Macro definitions
****************************************************************************************/
/** \brief Timeout for entering/leaving CAN initialization mode in milliseconds. */
#define CAN_INIT_TIMEOUT_MS (250u)
/** \brief Timeout for transmitting a CAN message in milliseconds. */
#define CAN_MSG_TX_TIMEOUT_MS (50u)
#if (BOOT_COM_CAN_CHANNEL_INDEX == 0)
/** \brief Set CAN base address to CAN0. */
#define CAN_REGS_BASE_ADDRESS (0x0140)
#elif (BOOT_COM_CAN_CHANNEL_INDEX == 1)
/** \brief Set CAN base address to CAN1. */
#define CAN_REGS_BASE_ADDRESS (0x0180)
#elif (BOOT_COM_CAN_CHANNEL_INDEX == 2)
/** \brief Set CAN base address to CAN2. */
#define CAN_REGS_BASE_ADDRESS (0x01c0)
#elif (BOOT_COM_CAN_CHANNEL_INDEX == 3)
/** \brief Set CAN base address to CAN3. */
#define CAN_REGS_BASE_ADDRESS (0x0200)
#elif (BOOT_COM_CAN_CHANNEL_INDEX == 4)
/** \brief Set CAN base address to CAN4. */
#define CAN_REGS_BASE_ADDRESS (0x0280)
#endif
/** \brief Macro for accessing the CAN related control registers. */
#define CAN ((volatile tCanRegs *)CAN_REGS_BASE_ADDRESS)
/** \brief Configures a CAN message id for 29-bit (extended). */
#define EXTIDMASK_BIT (0x80000000)
/* macros for conveniently converting standard and extended message identifiers to the
* format specified by the MSCAN message slot.
*/
#define CONVERT_STD_ID_TO_REG0(id) ((blt_int8u)(((blt_int16u)id & 0x07f8) >> 3))
#define CONVERT_STD_ID_TO_REG1(id) ((blt_int8u)(id & 0x07) << 5)
#define CONVERT_STD_ID_TO_REG2(id) (0)
#define CONVERT_STD_ID_TO_REG3(id) (0)
#define CONVERT_EXT_ID_TO_REG0(id) ((blt_int8u)(id >> 21))
#define CONVERT_EXT_ID_TO_REG1(id) ((((blt_int8u)(id >> 15)) & 0x07) | \
(((blt_int8u)(id >> 13)) & 0xe0) | (IDE_BIT))
#define CONVERT_EXT_ID_TO_REG2(id) ((blt_int8u)(((blt_int16u)id & 0x7f80) >> 7))
#define CONVERT_EXT_ID_TO_REG3(id) ((blt_int8u)(id & 0x7f) << 1)
/****************************************************************************************
* Register definitions
****************************************************************************************/
/** \brief Initialization mode request bit. */
#define INITRQ_BIT (0x01)
/** \brief Initialization mode handshake bit. */
#define INITAK_BIT (0x01)
/** \brief CAN controller enable bit. */
#define CANE_BIT (0x80)
/** \brief Filter mode bit 0. */
#define IDAM0_BIT (0x10)
/** \brief Filter mode bit 1. */
#define IDAM1_BIT (0x20)
/** \brief Transmit buffer 0 select bit. */
#define TX0_BIT (0x01)
/** \brief Transmit buffer 0 empty bit. */
#define TXE0_BIT (0x01)
/** \brief 29-bit extended id bit. */
#define IDE_BIT (0x08)
/** \brief Receive buffer full flag bit. */
#define RXF_BIT (0x01)
/****************************************************************************************
* Function prototypes
****************************************************************************************/
static blt_bool CanGetSpeedConfig(blt_int16u baud, blt_int8u *btr0, blt_int8u *btr1);
/****************************************************************************************
* Local constant declarations
****************************************************************************************/
/**
* \brief Array with possible time quanta configurations.
* \details According to the CAN protocol 1 bit-time can be made up of between 8..25
* time quanta (TQ). The total TQ in a bit is SYNC + TSEG1 + TSEG2 with SYNC
* always being 1. The sample point is (SYNC + TSEG1) / (SYNC + TSEG1 + SEG2)
* * 100%. This array contains possible and valid time quanta configurations
* with a sample point between 68..78%.
*/
static const tCanBusTiming canTiming[] =
{
/* TQ | TSEG1 | TSEG2 | SP */
/* ------------------------- */
{ 5, 2 }, /* 8 | 5 | 2 | 75% */
{ 6, 2 }, /* 9 | 6 | 2 | 78% */
{ 6, 3 }, /* 10 | 6 | 3 | 70% */
{ 7, 3 }, /* 11 | 7 | 3 | 73% */
{ 8, 3 }, /* 12 | 8 | 3 | 75% */
{ 9, 3 }, /* 13 | 9 | 3 | 77% */
{ 9, 4 }, /* 14 | 9 | 4 | 71% */
{ 10, 4 }, /* 15 | 10 | 4 | 73% */
{ 11, 4 }, /* 16 | 11 | 4 | 75% */
{ 12, 4 }, /* 17 | 12 | 4 | 76% */
{ 12, 5 }, /* 18 | 12 | 5 | 72% */
{ 13, 5 }, /* 19 | 13 | 5 | 74% */
{ 14, 5 }, /* 20 | 14 | 5 | 75% */
{ 15, 5 }, /* 21 | 15 | 5 | 76% */
{ 15, 6 }, /* 22 | 15 | 6 | 73% */
{ 16, 6 }, /* 23 | 16 | 6 | 74% */
{ 16, 7 }, /* 24 | 16 | 7 | 71% */
{ 16, 8 } /* 25 | 16 | 8 | 68% */
};
/************************************************************************************//**
** \brief Initializes the CAN controller and synchronizes it to the CAN bus.
** \return none.
**
****************************************************************************************/
void CanInit(void)
{
blt_int8u btrRegValues[2];
blt_bool result;
blt_int32u accept_code;
blt_int32u accept_mask;
blt_int32u timeout;
/* the current implementation supports CAN0..4. throw an assertion error in case a
* different CAN channel is configured.
*/
ASSERT_CT((BOOT_COM_CAN_CHANNEL_INDEX >= 0) && (BOOT_COM_CAN_CHANNEL_INDEX <= 4));
/* enter initialization mode. note that this automatically disables CAN interrupts */
CAN->cctl0 = INITRQ_BIT;
/* set timeout time for entering init mode */
timeout = TimerGet() + CAN_INIT_TIMEOUT_MS;
/* wait for initialization mode entry handshake from the hardware */
while ((CAN->cctl1 & INITAK_BIT) == 0)
{
/* keep the watchdog happy */
CopService();
/* break loop upon timeout. this would indicate a hardware failure. */
if (TimerGet() > timeout)
{
break;
}
}
/* enable the CAN controller, disable wake up and listen modes and set the
* crystal oscillator as the clock source.
*/
CAN->cctl1 = CANE_BIT;
/* configure baudrate */
result = CanGetSpeedConfig(BOOT_COM_CAN_BAUDRATE/1000, &btrRegValues[0], &btrRegValues[1]);
ASSERT_RT(result == BLT_TRUE);
/* configure the baudrate */
CAN->cbtr0 = btrRegValues[0];
CAN->cbtr1 = btrRegValues[1];
/* enable 2 32-bit acceptance filters. both will be configured for the same code and
* mask. the only difference is that filter 0 will be setup to receive extended 29-bit
* identifiers and filter 0 to receive standard 11-bit identifiers.
*/
CAN->cidac &= ~(IDAM1_BIT | IDAM0_BIT);
/* set the acceptance filter code and mask to a value that only BOOT_COM_CAN_RX_MSG_ID
* is received.
*/
accept_code = BOOT_COM_CAN_RX_MSG_ID;
accept_mask = 0;
/* configure acceptance filter 0 for 29-bit extended identifiers */
CAN->cidar0 = CONVERT_EXT_ID_TO_REG0(accept_code);
CAN->cidar1 = CONVERT_EXT_ID_TO_REG1(accept_code);
CAN->cidar2 = CONVERT_EXT_ID_TO_REG2(accept_code);
CAN->cidar3 = CONVERT_EXT_ID_TO_REG3(accept_code);
CAN->cidmr0 = CONVERT_EXT_ID_TO_REG0(accept_mask);
CAN->cidmr1 = (CONVERT_EXT_ID_TO_REG1(accept_mask) | 0x10) & ~IDE_BIT;
CAN->cidmr2 = CONVERT_EXT_ID_TO_REG2(accept_mask);
CAN->cidmr3 = CONVERT_EXT_ID_TO_REG3(accept_mask);
/* configure acceptance filter 1 for 11-bit standard identifiers */
CAN->cidar4 = CONVERT_STD_ID_TO_REG0(accept_code);
CAN->cidar5 = CONVERT_STD_ID_TO_REG1(accept_code);
CAN->cidar6 = CONVERT_STD_ID_TO_REG2(accept_code);
CAN->cidar7 = CONVERT_STD_ID_TO_REG3(accept_code);
CAN->cidmr4 = CONVERT_STD_ID_TO_REG0(accept_mask);
CAN->cidmr5 = CONVERT_STD_ID_TO_REG1(accept_mask) | (0x04 | 0x02 | 0x01);
CAN->cidmr6 = CONVERT_STD_ID_TO_REG2(accept_mask);
CAN->cidmr7 = CONVERT_STD_ID_TO_REG3(accept_mask);
/* leave initialization mode and synchronize to the CAN bus */
CAN->cctl0 &= ~INITRQ_BIT;
/* set timeout time for leaving init mode */
timeout = TimerGet() + CAN_INIT_TIMEOUT_MS;
/* wait for CAN bus synchronization handshake from the hardware */
while ((CAN->cctl1 & INITAK_BIT) != 0)
{
/* keep the watchdog happy */
CopService();
/* break loop upon timeout. this would indicate a hardware failure. */
if (TimerGet() > timeout)
{
break;
}
}
/* bring transmit buffer 0 in the foreground as this is the only one used by this
* driver.
*/
CAN->ctbsel = TX0_BIT;
} /*** end of CanInit ***/
/************************************************************************************//**
** \brief Transmits a packet formatted for the communication interface.
** \param data Pointer to byte array with data that it to be transmitted.
** \param len Number of bytes that are to be transmitted.
** \return none.
**
****************************************************************************************/
void CanTransmitPacket(blt_int8u *data, blt_int8u len)
{
blt_int8u byte_idx;
blt_int32u txMsgId;
blt_int32u timeout;
/* double check that the transmit slot is really available */
ASSERT_RT((CAN->ctflg & TXE0_BIT) != 0);
/* is this a message with an 11-bit identifier? */
if ((BOOT_COM_CAN_TX_MSG_ID & EXTIDMASK_BIT) == 0)
{
/* store the identifier */
txMsgId = BOOT_COM_CAN_TX_MSG_ID;
txMsgId &= ~EXTIDMASK_BIT;
CAN->txSlot.idr[0] = CONVERT_STD_ID_TO_REG0(txMsgId);
CAN->txSlot.idr[1] = CONVERT_STD_ID_TO_REG1(txMsgId);
CAN->txSlot.idr[2] = CONVERT_STD_ID_TO_REG2(txMsgId);
CAN->txSlot.idr[3] = CONVERT_STD_ID_TO_REG3(txMsgId);
}
else
{
/* store the identifier */
txMsgId = BOOT_COM_CAN_TX_MSG_ID;
txMsgId &= ~EXTIDMASK_BIT;
CAN->txSlot.idr[0] = CONVERT_EXT_ID_TO_REG0(txMsgId);
CAN->txSlot.idr[1] = CONVERT_EXT_ID_TO_REG1(txMsgId);
CAN->txSlot.idr[2] = CONVERT_EXT_ID_TO_REG2(txMsgId);
CAN->txSlot.idr[3] = CONVERT_EXT_ID_TO_REG3(txMsgId);
}
/* store the data length code */
CAN->txSlot.dlr = len;
/* store the message data */
for (byte_idx=0; byte_idx<len; byte_idx++)
{
CAN->txSlot.dsr[byte_idx] = data[byte_idx];
}
/* start the transmission by clearing the buffer empty flag. must be done
* by writing a 1 value.
*/
CAN->ctflg = TXE0_BIT;
/* set timeout time to wait for transmission completion */
timeout = TimerGet() + CAN_MSG_TX_TIMEOUT_MS;
/* wait for transmit completion */
while ((CAN->ctflg & TXE0_BIT) == 0)
{
/* keep the watchdog happy */
CopService();
/* break loop upon timeout. this would indicate a hardware failure or no other
* nodes connected to the bus.
*/
if (TimerGet() > timeout)
{
break;
}
}
} /*** end of CanTransmitPacket ***/
/************************************************************************************//**
** \brief Receives a communication interface packet if one is present.
** \param data Pointer to byte array where the data is to be stored.
** \param len Pointer where the length of the packet is to be stored.
** \return BLT_TRUE is a packet was received, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool CanReceivePacket(blt_int8u *data, blt_int8u *len)
{
blt_int32u rxMsgId;
blt_int8u rxMsgLen;
blt_int8u byte_idx;
blt_bool result = BLT_FALSE;
/* check if a new message was received */
if ((CAN->crflg & RXF_BIT) == RXF_BIT)
{
/* check IDE-bit to determine if it is a 11-bit or 29-bit identifier */
if ((CAN->rxSlot.idr[1] & IDE_BIT) == 0)
{
/* 11-bit id */
rxMsgId = (*(blt_int16u *)(&CAN->rxSlot.idr[0])) >> 5;
}
else
{
/* 29-bit id */
rxMsgId = (blt_int32u)(((*(blt_int32u *)(&CAN->rxSlot.idr[0])) & 0x0007ffff) >> 1) |
(blt_int32u)(((*(blt_int32u *)(&CAN->rxSlot.idr[0])) & 0xffe00000) >> 3);
rxMsgId |= EXTIDMASK_BIT;
}
/* is this the packet identifier? */
if (rxMsgId == BOOT_COM_CAN_RX_MSG_ID)
{
result = BLT_TRUE;
/* store the dlc */
rxMsgLen = CAN->rxSlot.dlr & 0xf;
/* copy message data */
for (byte_idx=0; byte_idx<rxMsgLen; byte_idx++)
{
data[byte_idx] = CAN->rxSlot.dsr[byte_idx];
}
*len = rxMsgLen;
}
/* release the receive object by clearing the rx flag */
CAN->crflg &= RXF_BIT;
}
return result;
} /*** end of CanReceivePacket ***/
/************************************************************************************//**
** \brief Search algorithm to match the desired baudrate to a possible bus timing
** configuration.
** \param baud The desired baudrate in kbps. Valid values are 10..1000.
** \param btr0 Pointer to where the value for register CANxBTR0 will be stored.
** \param btr1 Pointer to where the value for register CANxBTR1 will be stored.
** \return BLT_TRUE if the CAN bustiming register values were found, BLT_FALSE
** otherwise.
**
****************************************************************************************/
static blt_bool CanGetSpeedConfig(blt_int16u baud, blt_int8u *btr0, blt_int8u *btr1)
{
blt_int8u prescaler;
blt_int8u cnt;
/* loop through all possible time quanta configurations to find a match */
for (cnt=0; cnt < sizeof(canTiming)/sizeof(canTiming[0]); cnt++)
{
if ((BOOT_CPU_XTAL_SPEED_KHZ % (baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1))) == 0)
{
/* compute the prescaler that goes with this TQ configuration */
prescaler = (blt_int8u)(BOOT_CPU_XTAL_SPEED_KHZ/(baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1)));
/* make sure the prescaler is valid */
if ((prescaler > 0) && (prescaler <= 64))
{
/* store the MSCAN bustiming register values */
*btr0 = prescaler - 1;
*btr1 = ((canTiming[cnt].tseg2 - 1) << 4) | (canTiming[cnt].tseg1 - 1);
/* found a good bus timing configuration */
return BLT_TRUE;
}
}
/* service the watchdog */
CopService();
}
/* could not find a good bus timing configuration */
return BLT_FALSE;
} /*** end of CanGetSpeedConfig ***/
#endif /* BOOT_COM_CAN_ENABLE > 0 */
/*********************************** end of can.c **************************************/