/************************************************************************************//** * \file Demo\HCS12_Evbplus_Dragon12p_CodeWarrior\Prog\boot.c * \brief Demo program bootloader interface source file. * \ingroup Prog_HCS12_Evbplus_Dragon12p_CodeWarrior * \internal *---------------------------------------------------------------------------------------- * C O P Y R I G H T *---------------------------------------------------------------------------------------- * Copyright (c) 2013 by Feaser http://www.feaser.com All rights reserved * *---------------------------------------------------------------------------------------- * L I C E N S E *---------------------------------------------------------------------------------------- * This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any later * version. * * OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You have received a copy of the GNU General Public License along with OpenBLT. It * should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy. * * \endinternal ****************************************************************************************/ /**************************************************************************************** * Include files ****************************************************************************************/ #include "header.h" /* generic header */ /**************************************************************************************** * Function prototypes ****************************************************************************************/ #if (BOOT_COM_UART_ENABLE > 0) static void BootComUartInit(void); static void BootComUartCheckActivationRequest(void); #endif #if (BOOT_COM_CAN_ENABLE > 0) static void BootComCanInit(void); static void BootComCanCheckActivationRequest(void); #endif /************************************************************************************//** ** \brief Initializes the communication interface. ** \return none. ** ****************************************************************************************/ void BootComInit(void) { #if (BOOT_COM_UART_ENABLE > 0) BootComUartInit(); #endif #if (BOOT_COM_CAN_ENABLE > 0) BootComCanInit(); #endif } /*** end of BootComInit ***/ /************************************************************************************//** ** \brief Receives the CONNECT request from the host, which indicates that the ** bootloader should be activated and, if so, activates it. ** \return none. ** ****************************************************************************************/ void BootComCheckActivationRequest(void) { #if (BOOT_COM_UART_ENABLE > 0) BootComUartCheckActivationRequest(); #endif #if (BOOT_COM_CAN_ENABLE > 0) BootComCanCheckActivationRequest(); #endif } /*** end of BootComCheckActivationRequest ***/ /************************************************************************************//** ** \brief Bootloader activation function. ** \return none. ** ****************************************************************************************/ void BootActivate(void) { /* perform a software reset by letting the watchdog time out. make sure it is enbled */ if ( (COPCTL & 0x07) == 0) { /* enable the watchdog */ COPCTL = 0x71; } /* wait for the watchdog to time out which triggers a reset */ while (1==1) { ; } } /*** end of BootActivate ***/ #if (BOOT_COM_UART_ENABLE > 0) /**************************************************************************************** * U N I V E R S A L A S Y N C H R O N O U S R X T X I N T E R F A C E ****************************************************************************************/ /**************************************************************************************** * Function prototypes ****************************************************************************************/ static unsigned char UartReceiveByte(unsigned char *data); /************************************************************************************//** ** \brief Initializes the UART communication interface. ** \return none. ** ****************************************************************************************/ static void BootComUartInit(void) { unsigned short baudrate_sbr0_12; /* reset the SCI subsystem's configuration, which automatically configures it for * 8,n,1 communication mode. */ SCI0CR2 = 0; SCI0CR1 = 0; SCI0BDH = 0; SCI0BDL = 0; /* configure the baudrate from BOOT_COM_UART_BAUDRATE */ baudrate_sbr0_12 = (BOOT_CPU_SYSTEM_SPEED_KHZ * 1000ul) / 16 / BOOT_COM_UART_BAUDRATE; baudrate_sbr0_12 &= SCI0BD_SBR_MASK; /* write first MSB then LSB for the baudrate to latch */ SCI0BDH = (unsigned char)(baudrate_sbr0_12 >> 8); SCI0BDL = (unsigned char)baudrate_sbr0_12; /* enable the receiver */ SCI0CR2 |= (SCI0CR2_RE_MASK); } /*** end of BootComUartInit ***/ /************************************************************************************//** ** \brief Receives the CONNECT request from the host, which indicates that the ** bootloader should be activated and, if so, activates it. ** \return none. ** ****************************************************************************************/ static void BootComUartCheckActivationRequest(void) { static unsigned char xcpCtoReqPacket[BOOT_COM_UART_RX_MAX_DATA+1]; static unsigned char xcpCtoRxLength; static unsigned char xcpCtoRxInProgress = 0; /* start of cto packet received? */ if (xcpCtoRxInProgress == 0) { /* store the message length when received */ if (UartReceiveByte(&xcpCtoReqPacket[0]) == 1) { /* indicate that a cto packet is being received */ xcpCtoRxInProgress = 1; /* reset packet data count */ xcpCtoRxLength = 0; } } else { /* store the next packet byte */ if (UartReceiveByte(&xcpCtoReqPacket[xcpCtoRxLength+1]) == 1) { /* increment the packet data count */ xcpCtoRxLength++; /* check to see if the entire packet was received */ if (xcpCtoRxLength == xcpCtoReqPacket[0]) { /* done with cto packet reception */ xcpCtoRxInProgress = 0; /* check if this was an XCP CONNECT command */ if ((xcpCtoReqPacket[1] == 0xff) && (xcpCtoReqPacket[2] == 0x00)) { /* connection request received so start the bootloader */ BootActivate(); } } } } } /*** end of BootComUartCheckActivationRequest ***/ /************************************************************************************//** ** \brief Receives a communication interface byte if one is present. ** \param data Pointer to byte where the data is to be stored. ** \return 1 if a byte was received, 0 otherwise. ** ****************************************************************************************/ static unsigned char UartReceiveByte(unsigned char *data) { /* check if a new byte was received by means of the RDRF-bit */ if((SCI0SR1 & SCI0SR1_RDRF_MASK) != 0) { /* store the received byte */ data[0] = SCI0DRL; /* inform caller of the newly received byte */ return 1; } /* inform caller that no new data was received */ return 0; } /*** end of UartReceiveByte ***/ #endif /* BOOT_COM_UART_ENABLE > 0 */ #if (BOOT_COM_CAN_ENABLE > 0) /**************************************************************************************** * C O N T R O L L E R A R E A N E T W O R K I N T E R F A C E ****************************************************************************************/ /**************************************************************************************** * Type definitions ****************************************************************************************/ /** \brief Structure type with the layout of the CAN bus timing registers. */ typedef struct { unsigned char tseg1; /**< CAN time segment 1 */ unsigned char tseg2; /**< CAN time segment 2 */ } tCanBusTiming; /**************************************************************************************** * Macro definitions ****************************************************************************************/ #define CONVERT_STD_ID_TO_REG0(id) ((unsigned char)(((unsigned short)id & 0x07f8) >> 3)) #define CONVERT_STD_ID_TO_REG1(id) ((unsigned char)(id & 0x07) << 5) #define CONVERT_STD_ID_TO_REG2(id) (0) #define CONVERT_STD_ID_TO_REG3(id) (0) #define CONVERT_EXT_ID_TO_REG0(id) ((unsigned char)(id >> 21)) #define CONVERT_EXT_ID_TO_REG1(id) ((((unsigned char)(id >> 15)) & 0x07) | \ (((unsigned char)(id >> 13)) & 0xe0) | CAN0RXIDR1_IDE_MASK) #define CONVERT_EXT_ID_TO_REG2(id) ((unsigned char)(((unsigned short)id & 0x7f80) >> 7)) #define CONVERT_EXT_ID_TO_REG3(id) ((unsigned char)(id & 0x7f) << 1) /**************************************************************************************** * Local constant declarations ****************************************************************************************/ /** * \brief Array with possible time quanta configurations. * \details According to the CAN protocol 1 bit-time can be made up of between 8..25 * time quanta (TQ). The total TQ in a bit is SYNC + TSEG1 + TSEG2 with SYNC * always being 1. The sample point is (SYNC + TSEG1) / (SYNC + TSEG1 + SEG2) * * 100%. This array contains possible and valid time quanta configurations * with a sample point between 68..78%. */ static const tCanBusTiming canTiming[] = { /* TQ | TSEG1 | TSEG2 | SP */ /* ------------------------- */ { 5, 2 }, /* 8 | 5 | 2 | 75% */ { 6, 2 }, /* 9 | 6 | 2 | 78% */ { 6, 3 }, /* 10 | 6 | 3 | 70% */ { 7, 3 }, /* 11 | 7 | 3 | 73% */ { 8, 3 }, /* 12 | 8 | 3 | 75% */ { 9, 3 }, /* 13 | 9 | 3 | 77% */ { 9, 4 }, /* 14 | 9 | 4 | 71% */ { 10, 4 }, /* 15 | 10 | 4 | 73% */ { 11, 4 }, /* 16 | 11 | 4 | 75% */ { 12, 4 }, /* 17 | 12 | 4 | 76% */ { 12, 5 }, /* 18 | 12 | 5 | 72% */ { 13, 5 }, /* 19 | 13 | 5 | 74% */ { 14, 5 }, /* 20 | 14 | 5 | 75% */ { 15, 5 }, /* 21 | 15 | 5 | 76% */ { 15, 6 }, /* 22 | 15 | 6 | 73% */ { 16, 6 }, /* 23 | 16 | 6 | 74% */ { 16, 7 }, /* 24 | 16 | 7 | 71% */ { 16, 8 } /* 25 | 16 | 8 | 68% */ }; /************************************************************************************//** ** \brief Search algorithm to match the desired baudrate to a possible bus timing ** configuration. ** \param baud The desired baudrate in kbps. Valid values are 10..1000. ** \param btr0 Pointer to where the value for register CANxBTR0 will be stored. ** \param btr1 Pointer to where the value for register CANxBTR1 will be stored. ** \return 1 if the CAN bustiming register values were found, 0 otherwise. ** ****************************************************************************************/ static unsigned char CanGetSpeedConfig(unsigned short baud, unsigned char *btr0, unsigned char *btr1) { unsigned char prescaler; unsigned char cnt; /* loop through all possible time quanta configurations to find a match */ for (cnt=0; cnt < sizeof(canTiming)/sizeof(canTiming[0]); cnt++) { if ((BOOT_CPU_XTAL_SPEED_KHZ % (baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1))) == 0) { /* compute the prescaler that goes with this TQ configuration */ prescaler = (unsigned char)(BOOT_CPU_XTAL_SPEED_KHZ/(baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1))); /* make sure the prescaler is valid */ if ( (prescaler > 0) && (prescaler <= 64) ) { /* store the MSCAN bustiming register values */ *btr0 = prescaler - 1; *btr1 = ((canTiming[cnt].tseg2 - 1) << 4) | (canTiming[cnt].tseg1 - 1); /* found a good bus timing configuration */ return 1; } } } /* could not find a good bus timing configuration */ return 0; } /*** end of CanGetSpeedConfig ***/ /************************************************************************************//** ** \brief Initializes the CAN communication interface. ** \return none. ** ****************************************************************************************/ static void BootComCanInit(void) { unsigned char btrRegValues[2]; unsigned long accept_code; unsigned long accept_mask; /* enter initialization mode. note that this automatically disables CAN interrupts */ CAN0CTL0 = CAN0CTL0_INITRQ_MASK; /* wait for initialization mode entry handshake from the hardware */ while ((CAN0CTL1 & CAN0CTL1_INITAK_MASK) == 0) { ; } /* enable the CAN controller, disable wake up and listen modes and set the * crystal oscillator as the clock source. */ CAN0CTL1 = CAN0CTL1_CANE_MASK; /* configure baudrate */ if (CanGetSpeedConfig(BOOT_COM_CAN_BAUDRATE/1000, &btrRegValues[0], &btrRegValues[1]) == 1) { /* configure the baudrate */ CAN0BTR0 = btrRegValues[0]; CAN0BTR1 = btrRegValues[1]; } /* enable 2 32-bit acceptance filters. both will be configured for the same code and * mask. the only difference is that filter 0 will be setup to receive extended 29-bit * identifiers and filter 0 to receive standard 11-bit identifiers. */ CAN0IDAC_IDAM0 = 0; CAN0IDAC_IDAM1 = 0; /* set the acceptance filter code and mask to receive all messages */ accept_code = 0x00000000; accept_mask = 0x1fffffff; /* configure acceptance filter 0 for 29-bit extended identifiers */ CAN0IDAR0 = CONVERT_EXT_ID_TO_REG0(accept_code); CAN0IDAR1 = CONVERT_EXT_ID_TO_REG1(accept_code); CAN0IDAR2 = CONVERT_EXT_ID_TO_REG2(accept_code); CAN0IDAR3 = CONVERT_EXT_ID_TO_REG3(accept_code); CAN0IDMR0 = CONVERT_EXT_ID_TO_REG0(accept_mask); CAN0IDMR1 = (CONVERT_EXT_ID_TO_REG1(accept_mask) | 0x10) & (unsigned char)(~0x08); CAN0IDMR2 = CONVERT_EXT_ID_TO_REG2(accept_mask); CAN0IDMR3 = CONVERT_EXT_ID_TO_REG3(accept_mask); /* configure acceptance filter 1 for 11-bit standard identifiers */ CAN0IDAR4 = CONVERT_STD_ID_TO_REG0(accept_code); CAN0IDAR5 = CONVERT_STD_ID_TO_REG1(accept_code); CAN0IDAR6 = CONVERT_STD_ID_TO_REG2(accept_code); CAN0IDAR7 = CONVERT_STD_ID_TO_REG3(accept_code); CAN0IDMR4 = CONVERT_STD_ID_TO_REG0(accept_mask); CAN0IDMR5 = CONVERT_STD_ID_TO_REG1(accept_mask) | (0x04 | 0x02 | 0x01); CAN0IDMR6 = CONVERT_STD_ID_TO_REG2(accept_mask); CAN0IDMR7 = CONVERT_STD_ID_TO_REG3(accept_mask); /* leave initialization mode and synchronize to the CAN bus */ CAN0CTL0_INITRQ = 0; /* wait for CAN bus synchronization handshake from the hardware */ while ((CAN0CTL1 & CAN0CTL1_INITAK_MASK) != 0) { ; } } /*** end of BootComCanInit ***/ /************************************************************************************//** ** \brief Receives the CONNECT request from the host, which indicates that the ** bootloader should be activated and, if so, activates it. ** \return none. ** ****************************************************************************************/ static void BootComCanCheckActivationRequest(void) { unsigned long rxMsgId; /* check if a new message was received */ if ((CAN0RFLG & CAN0RFLG_RXF_MASK) == CAN0RFLG_RXF_MASK) { /* check IDE-bit to determine if it is a 11-bit or 29-bit identifier */ if ((CAN0RXIDR1 & CAN0RXIDR1_IDE_MASK) == 0) { /* 11-bit id */ rxMsgId = (*(unsigned short*)(&CAN0RXIDR0)) >> 5; } else { /* 29-bit id */ rxMsgId = (unsigned long)(((*(unsigned long*)(&CAN0RXIDR0)) & 0x0007ffff) >> 1) | (unsigned long)(((*(unsigned long*)(&CAN0RXIDR0)) & 0xffe00000) >> 3); } /* is this the packet identifier? */ if (rxMsgId == BOOT_COM_CAN_RX_MSG_ID) { /* check if this was an XCP CONNECT command */ if ( (CAN0RXDSR0 == 0xff) && (CAN0RXDSR1 == 0x00) ) { /* release the receive object by clearing the rx flag */ CAN0RFLG &= CAN0RFLG_RXF_MASK; /* connection request received so start the bootloader */ BootActivate(); } } /* release the receive object by clearing the rx flag */ CAN0RFLG &= CAN0RFLG_RXF_MASK; } } /*** end of BootComCanCheckActivationRequest ***/ #endif /* BOOT_COM_CAN_ENABLE > 0 */ /*********************************** end of boot.c *************************************/