openblt/Target/Source/_template/can.c

274 lines
13 KiB
C

/************************************************************************************//**
* \file Source/_template/can.c
* \brief Bootloader CAN communication interface source file.
* \ingroup Target__template_can
* \internal
*----------------------------------------------------------------------------------------
* C O P Y R I G H T
*----------------------------------------------------------------------------------------
* Copyright (c) 2019 by Feaser http://www.feaser.com All rights reserved
*
*----------------------------------------------------------------------------------------
* L I C E N S E
*----------------------------------------------------------------------------------------
* This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You have received a copy of the GNU General Public License along with OpenBLT. It
* should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy.
*
* \endinternal
****************************************************************************************/
/************************************************************************************//**
* \defgroup Target__template_can CAN driver of a port
* \brief This module implements the CAN driver of a microcontroller port.
* \details For the most parts, this driver is already implemented. The only parts that
* need porting are the CAN initialization, CAN message reception and CAN
* message transmission.
* \ingroup Target__template
****************************************************************************************/
/****************************************************************************************
* Include files
****************************************************************************************/
#include "boot.h" /* bootloader generic header */
#if (BOOT_COM_CAN_ENABLE > 0)
/* TODO ##Port Include microcontroller peripheral driver header files here. */
/****************************************************************************************
* Macro definitions
****************************************************************************************/
/** \brief Timeout for transmitting a CAN message in milliseconds. */
#define CAN_MSG_TX_TIMEOUT_MS (50u)
/****************************************************************************************
* Type definitions
****************************************************************************************/
/** \brief Structure type for grouping CAN bus timing related information. */
typedef struct t_can_bus_timing
{
blt_int8u tseg1; /**< CAN time segment 1 */
blt_int8u tseg2; /**< CAN time segment 2 */
} tCanBusTiming;
/****************************************************************************************
* Local constant declarations
****************************************************************************************/
/** \brief CAN bittiming table for dynamically calculating the bittiming settings.
* \details According to the CAN protocol 1 bit-time can be made up of between 8..25
* time quanta (TQ). The total TQ in a bit is SYNC + TSEG1 + TSEG2 with SYNC
* always being 1. The sample point is (SYNC + TSEG1) / (SYNC + TSEG1 + SEG2) *
* 100%. This array contains possible and valid time quanta configurations with
* a sample point between 68..78%.
*/
static const tCanBusTiming canTiming[] =
{
/* TQ | TSEG1 | TSEG2 | SP */
/* ------------------------- */
{ 5, 2 }, /* 8 | 5 | 2 | 75% */
{ 6, 2 }, /* 9 | 6 | 2 | 78% */
{ 6, 3 }, /* 10 | 6 | 3 | 70% */
{ 7, 3 }, /* 11 | 7 | 3 | 73% */
{ 8, 3 }, /* 12 | 8 | 3 | 75% */
{ 9, 3 }, /* 13 | 9 | 3 | 77% */
{ 9, 4 }, /* 14 | 9 | 4 | 71% */
{ 10, 4 }, /* 15 | 10 | 4 | 73% */
{ 11, 4 }, /* 16 | 11 | 4 | 75% */
{ 12, 4 }, /* 17 | 12 | 4 | 76% */
{ 12, 5 }, /* 18 | 12 | 5 | 72% */
{ 13, 5 }, /* 19 | 13 | 5 | 74% */
{ 14, 5 }, /* 20 | 14 | 5 | 75% */
{ 15, 5 }, /* 21 | 15 | 5 | 76% */
{ 15, 6 }, /* 22 | 15 | 6 | 73% */
{ 16, 6 }, /* 23 | 16 | 6 | 74% */
{ 16, 7 }, /* 24 | 16 | 7 | 71% */
{ 16, 8 } /* 25 | 16 | 8 | 68% */
};
/************************************************************************************//**
** \brief Search algorithm to match the desired baudrate to a possible bus
** timing configuration.
** \param baud The desired baudrate in kbps. Valid values are 10..1000.
** \param prescaler Pointer to where the value for the prescaler will be stored.
** \param tseg1 Pointer to where the value for TSEG2 will be stored.
** \param tseg2 Pointer to where the value for TSEG2 will be stored.
** \return BLT_TRUE if the CAN bustiming register values were found, BLT_FALSE
** otherwise.
**
****************************************************************************************/
static blt_bool CanGetSpeedConfig(blt_int16u baud, blt_int16u *prescaler,
blt_int8u *tseg1, blt_int8u *tseg2)
{
blt_int8u cnt;
blt_int32u canClockFreqkHz;
/* TODO ##Port This helper function assists with getting a compatible bittiming
* configuration, based on the specified 'baud' communication speed on the CAN bus in
* kbps. This function needs two microcontroller specific values: (1) the speed of
* the clock that sources the CAN peripheral and (2) the supported range of the
* prescaler that for scaling down the CAN peripheral clock speed.
*/
/* TODO ##Port Set the clock speed of the CAN peripheral in kHz. You can used the
* macros BOOT_CPU_XTAL_SPEED_KHZ and BOOT_CPU_SYSTEM_SPEED_KHZ if applicable.
*/
canClockFreqkHz = BOOT_CPU_XTAL_SPEED_KHZ;
/* loop through all possible time quanta configurations to find a match */
for (cnt=0; cnt < sizeof(canTiming)/sizeof(canTiming[0]); cnt++)
{
if ((canClockFreqkHz % (baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1))) == 0)
{
/* compute the prescaler that goes with this TQ configuration */
*prescaler = canClockFreqkHz/(baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1));
/* TODO ##Port Update the prescaler range that is supported by the CAN peripheral
* on the microcontroller. The example implementation is for a prescaler that can
* be in the 1 - 1024 range.
*/
/* make sure the prescaler is valid */
if ((*prescaler > 0) && (*prescaler <= 1024))
{
/* store the bustiming configuration */
*tseg1 = canTiming[cnt].tseg1;
*tseg2 = canTiming[cnt].tseg2;
/* found a good bus timing configuration */
return BLT_TRUE;
}
}
}
/* could not find a good bus timing configuration */
return BLT_FALSE;
} /*** end of CanGetSpeedConfig ***/
/************************************************************************************//**
** \brief Initializes the CAN controller and synchronizes it to the CAN bus.
** \return none.
**
****************************************************************************************/
void CanInit(void)
{
blt_int16u prescaler = 0;
blt_int8u tseg1 = 0, tseg2 = 0;
/* TODO ##Port Perform compile time assertion to check that the configured CAN channel
* is actually supported by this driver. The example is for a driver where CAN
* channels 0 - 1 are supported.
*/
ASSERT_CT((BOOT_COM_CAN_CHANNEL_INDEX == 0 || BOOT_COM_CAN_CHANNEL_INDEX == 1));
/* obtain bittiming configuration information. */
if (CanGetSpeedConfig(BOOT_COM_CAN_BAUDRATE/1000, &prescaler, &tseg1, &tseg2) == BLT_FALSE)
{
/* Incorrect configuration. The specified baudrate is not supported for the given
* clock configuration. Verify the following settings in blt_conf.h:
* - BOOT_COM_CAN_BAUDRATE
* - BOOT_CPU_XTAL_SPEED_KHZ
* - BOOT_CPU_SYSTEM_SPEED_KHZ
*/
ASSERT_RT(BLT_FALSE);
}
/* TODO ##Port Perform the configuration and initialization of the CAN controller. Note
* that the bittiming related values are already stored in 'prescaler, 'tseg1', and
* 'tseg2'. There values are ready to be used. Typically, the following tasks need
* to be performed:
* (1) Place the CAN controller in initialization mode.
* (2) Disable all CAN related interrupts as the bootloader runs in polling mode.
* (3) Configure the bittiming based on: 'prescaler', 'tseg1' and 'tseg2'. It is okay
* to configure 1 time quanta for the synchronization jump width (SWJ).
* (4) Configure one transmit message object. It will be used in CanTransmitPacket()
* to transmit a CAN message with identifier BOOT_COM_CAN_TX_MSG_ID. Note that if
* the 0x80000000 bit is set in this identifier, it means that it is a 29-bit CAN
* identifier instead of an 11-bit.
* (5) Configure at least one reception message object and configure its reception
* acceptance filter such that only the CAN identifier BOOT_COM_CAN_RX_MSG_ID is
* received. Note that if the 0x80000000 bit is set in this identifier, it means
* that it is a 29-bit CAN identifier instead of an 11-bit.
* (6) Leave the initialization mode and place the CAN controller in operational mode.
*/
} /*** end of CanInit ***/
/************************************************************************************//**
** \brief Transmits a packet formatted for the communication interface.
** \param data Pointer to byte array with data that it to be transmitted.
** \param len Number of bytes that are to be transmitted.
** \return none.
**
****************************************************************************************/
void CanTransmitPacket(blt_int8u *data, blt_int8u len)
{
blt_int32u timeout;
/* TODO ##Port Configure the transmit message object for transmitting a CAN message
* with CAN identifier BOOT_COM_CAN_TX_MSG_ID. Note that if the 0x80000000 bit is set
* in this identifier, it means that it is a 29-bit CAN identifier instead of an
* 11-bit. Next, copy the message data to the transmit message object. The number
* of data bytes is in 'len' and the actual data byte values are in array 'data'.
* Once done, start the transmission of the message that was just stored in the
* transmit message object.
*/
/* TODO ##Port Wait for the message transmission to complete, with timeout though to
* make sure this function doesn't hang in case of an error. This is typically achieved
* by evaluating a transmit complete flag in a register of the transmit message object.
*/
/* determine timeout time for the transmit completion. */
timeout = TimerGet() + CAN_MSG_TX_TIMEOUT_MS;
/* poll for completion of the transmit operation. */
while (1 == 0)
{
/* service the watchdog. */
CopService();
/* break loop upon timeout. this would indicate a hardware failure or no other
* nodes connected to the bus.
*/
if (TimerGet() > timeout)
{
break;
}
}
} /*** end of CanTransmitPacket ***/
/************************************************************************************//**
** \brief Receives a communication interface packet if one is present.
** \param data Pointer to byte array where the data is to be stored.
** \param len Pointer where the length of the packet is to be stored.
** \return BLT_TRUE is a packet was received, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool CanReceivePacket(blt_int8u *data, blt_int8u *len)
{
blt_bool result = BLT_FALSE;
/* TODO ##Port Check for the reception of a new CAN message with identifier
* BOOT_COM_CAN_RX_MSG_ID. Note that if the 0x80000000 bit is set in this identifier,
* it means that it is a 29-bit CAN identifier instead of an 11-bit.
* If a new message with this CAN identifier was received, store the data byte values
* in array 'data' and store the number of data bytes in 'len'. Finally, set 'result'
* to BLT_TRUE to indicate to the caller of this function that a new CAN message was
* received and stored.
*/
/* give the result back to the caller */
return result;
} /*** end of CanReceivePacket ***/
#endif /* BOOT_COM_CAN_ENABLE > 0 */
/*********************************** end of can.c **************************************/