mirror of https://github.com/FOME-Tech/openblt.git
493 lines
20 KiB
C
493 lines
20 KiB
C
/************************************************************************************//**
|
|
* \file Demo/ARMCM4_STM32G4_Nucleo_G431RB_GCC/Prog/boot.c
|
|
* \brief Demo program bootloader interface source file.
|
|
* \ingroup Prog_ARMCM4_STM32G4_Nucleo_G431RB_GCC
|
|
* \internal
|
|
*----------------------------------------------------------------------------------------
|
|
* C O P Y R I G H T
|
|
*----------------------------------------------------------------------------------------
|
|
* Copyright (c) 2023 by Feaser http://www.feaser.com All rights reserved
|
|
*
|
|
*----------------------------------------------------------------------------------------
|
|
* L I C E N S E
|
|
*----------------------------------------------------------------------------------------
|
|
* This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
|
|
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
* PURPOSE. See the GNU General Public License for more details.
|
|
*
|
|
* You have received a copy of the GNU General Public License along with OpenBLT. It
|
|
* should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy.
|
|
*
|
|
* \endinternal
|
|
****************************************************************************************/
|
|
|
|
/****************************************************************************************
|
|
* Include files
|
|
****************************************************************************************/
|
|
#include "header.h" /* generic header */
|
|
|
|
|
|
/****************************************************************************************
|
|
* Function prototypes
|
|
****************************************************************************************/
|
|
#if (BOOT_COM_RS232_ENABLE > 0)
|
|
static void BootComRs232Init(void);
|
|
static void BootComRs232CheckActivationRequest(void);
|
|
#endif
|
|
#if (BOOT_COM_CAN_ENABLE > 0)
|
|
static void BootComCanInit(void);
|
|
static void BootComCanCheckActivationRequest(void);
|
|
#endif
|
|
|
|
|
|
/************************************************************************************//**
|
|
** \brief Initializes the communication interface.
|
|
** \return none.
|
|
**
|
|
****************************************************************************************/
|
|
void BootComInit(void)
|
|
{
|
|
#if (BOOT_COM_RS232_ENABLE > 0)
|
|
BootComRs232Init();
|
|
#endif
|
|
#if (BOOT_COM_CAN_ENABLE > 0)
|
|
BootComCanInit();
|
|
#endif
|
|
} /*** end of BootComInit ***/
|
|
|
|
|
|
/************************************************************************************//**
|
|
** \brief Receives the CONNECT request from the host, which indicates that the
|
|
** bootloader should be activated and, if so, activates it.
|
|
** \return none.
|
|
**
|
|
****************************************************************************************/
|
|
void BootComCheckActivationRequest(void)
|
|
{
|
|
#if (BOOT_COM_RS232_ENABLE > 0)
|
|
BootComRs232CheckActivationRequest();
|
|
#endif
|
|
#if (BOOT_COM_CAN_ENABLE > 0)
|
|
BootComCanCheckActivationRequest();
|
|
#endif
|
|
} /*** end of BootComCheckActivationRequest ***/
|
|
|
|
|
|
/************************************************************************************//**
|
|
** \brief Bootloader activation function.
|
|
** \return none.
|
|
**
|
|
****************************************************************************************/
|
|
void BootActivate(void)
|
|
{
|
|
/* perform software reset to activate the bootoader again */
|
|
NVIC_SystemReset();
|
|
} /*** end of BootActivate ***/
|
|
|
|
|
|
#if (BOOT_COM_RS232_ENABLE > 0)
|
|
/****************************************************************************************
|
|
* U N I V E R S A L A S Y N C H R O N O U S R X T X I N T E R F A C E
|
|
****************************************************************************************/
|
|
|
|
/****************************************************************************************
|
|
* Macro definitions
|
|
****************************************************************************************/
|
|
/** \brief Timeout time for the reception of a CTO packet. The timer is started upon
|
|
* reception of the first packet byte.
|
|
*/
|
|
#define RS232_CTO_RX_PACKET_TIMEOUT_MS (100u)
|
|
|
|
|
|
/****************************************************************************************
|
|
* Local data declarations
|
|
****************************************************************************************/
|
|
/** \brief UART handle to be used in API calls. */
|
|
static UART_HandleTypeDef rs232Handle;
|
|
|
|
|
|
/****************************************************************************************
|
|
* Function prototypes
|
|
****************************************************************************************/
|
|
static unsigned char Rs232ReceiveByte(unsigned char *data);
|
|
|
|
|
|
/************************************************************************************//**
|
|
** \brief Initializes the UART communication interface.
|
|
** \return none.
|
|
**
|
|
****************************************************************************************/
|
|
static void BootComRs232Init(void)
|
|
{
|
|
/* Configure UART peripheral. */
|
|
rs232Handle.Instance = USART2;
|
|
rs232Handle.Init.BaudRate = BOOT_COM_RS232_BAUDRATE;
|
|
rs232Handle.Init.WordLength = UART_WORDLENGTH_8B;
|
|
rs232Handle.Init.StopBits = UART_STOPBITS_1;
|
|
rs232Handle.Init.Parity = UART_PARITY_NONE;
|
|
rs232Handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
|
|
rs232Handle.Init.Mode = UART_MODE_TX_RX;
|
|
rs232Handle.Init.OverSampling = UART_OVERSAMPLING_16;
|
|
rs232Handle.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
|
|
rs232Handle.Init.ClockPrescaler = UART_PRESCALER_DIV8;
|
|
rs232Handle.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
|
|
/* Initialize the UART peripheral. */
|
|
HAL_UART_Init(&rs232Handle);
|
|
} /*** end of BootComRs232Init ***/
|
|
|
|
|
|
/************************************************************************************//**
|
|
** \brief Receives the CONNECT request from the host, which indicates that the
|
|
** bootloader should be activated and, if so, activates it.
|
|
** \return none.
|
|
**
|
|
****************************************************************************************/
|
|
static void BootComRs232CheckActivationRequest(void)
|
|
{
|
|
static unsigned char xcpCtoReqPacket[BOOT_COM_RS232_RX_MAX_DATA+1];
|
|
static unsigned char xcpCtoRxLength;
|
|
static unsigned char xcpCtoRxInProgress = 0;
|
|
static unsigned long xcpCtoRxStartTime = 0;
|
|
|
|
/* start of cto packet received? */
|
|
if (xcpCtoRxInProgress == 0)
|
|
{
|
|
/* store the message length when received */
|
|
if (Rs232ReceiveByte(&xcpCtoReqPacket[0]) == 1)
|
|
{
|
|
/* check that the length has a valid value. it should not be 0 */
|
|
if ( (xcpCtoReqPacket[0] > 0) &&
|
|
(xcpCtoReqPacket[0] <= BOOT_COM_RS232_RX_MAX_DATA) )
|
|
{
|
|
/* store the start time */
|
|
xcpCtoRxStartTime = TimerGet();
|
|
/* indicate that a cto packet is being received */
|
|
xcpCtoRxInProgress = 1;
|
|
/* reset packet data count */
|
|
xcpCtoRxLength = 0;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* store the next packet byte */
|
|
if (Rs232ReceiveByte(&xcpCtoReqPacket[xcpCtoRxLength+1]) == 1)
|
|
{
|
|
/* increment the packet data count */
|
|
xcpCtoRxLength++;
|
|
|
|
/* check to see if the entire packet was received */
|
|
if (xcpCtoRxLength == xcpCtoReqPacket[0])
|
|
{
|
|
/* done with cto packet reception */
|
|
xcpCtoRxInProgress = 0;
|
|
|
|
/* check if this was an XCP CONNECT command */
|
|
if ((xcpCtoReqPacket[1] == 0xff) && (xcpCtoRxLength == 2))
|
|
{
|
|
/* connection request received so start the bootloader */
|
|
BootActivate();
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* check packet reception timeout */
|
|
if (TimerGet() > (xcpCtoRxStartTime + RS232_CTO_RX_PACKET_TIMEOUT_MS))
|
|
{
|
|
/* cancel cto packet reception due to timeout. note that this automatically
|
|
* discards the already received packet bytes, allowing the host to retry.
|
|
*/
|
|
xcpCtoRxInProgress = 0;
|
|
}
|
|
}
|
|
}
|
|
} /*** end of BootComRs232CheckActivationRequest ***/
|
|
|
|
|
|
/************************************************************************************//**
|
|
** \brief Receives a communication interface byte if one is present.
|
|
** \param data Pointer to byte where the data is to be stored.
|
|
** \return 1 if a byte was received, 0 otherwise.
|
|
**
|
|
****************************************************************************************/
|
|
static unsigned char Rs232ReceiveByte(unsigned char *data)
|
|
{
|
|
HAL_StatusTypeDef result;
|
|
|
|
/* receive a byte in a non-blocking manner */
|
|
result = HAL_UART_Receive(&rs232Handle, data, 1, 0);
|
|
/* process the result */
|
|
if (result == HAL_OK)
|
|
{
|
|
/* success */
|
|
return 1;
|
|
}
|
|
/* error occurred */
|
|
return 0;
|
|
} /*** end of Rs232ReceiveByte ***/
|
|
#endif /* BOOT_COM_RS232_ENABLE > 0 */
|
|
|
|
|
|
#if (BOOT_COM_CAN_ENABLE > 0)
|
|
/****************************************************************************************
|
|
* C O N T R O L L E R A R E A N E T W O R K I N T E R F A C E
|
|
****************************************************************************************/
|
|
|
|
/****************************************************************************************
|
|
* Type definitions
|
|
****************************************************************************************/
|
|
/** \brief Structure type for grouping CAN bus timing related information. */
|
|
typedef struct t_can_bus_timing
|
|
{
|
|
unsigned char tseg1; /**< CAN time segment 1 */
|
|
unsigned char tseg2; /**< CAN time segment 2 */
|
|
} tCanBusTiming;
|
|
|
|
|
|
/****************************************************************************************
|
|
* Local constant declarations
|
|
****************************************************************************************/
|
|
/** \brief CAN bittiming table for dynamically calculating the bittiming settings.
|
|
* \details According to the CAN protocol 1 bit-time can be made up of between 8..25
|
|
* time quanta (TQ). The total TQ in a bit is SYNC + TSEG1 + TSEG2 with SYNC
|
|
* always being 1. The sample point is (SYNC + TSEG1) / (SYNC + TSEG1 + SEG2) *
|
|
* 100%. This array contains possible and valid time quanta configurations with
|
|
* a sample point between 68..78%.
|
|
*/
|
|
static const tCanBusTiming canTiming[] =
|
|
{ /* TQ | TSEG1 | TSEG2 | SP */
|
|
/* ------------------------- */
|
|
{ 5, 2 }, /* 8 | 5 | 2 | 75% */
|
|
{ 6, 2 }, /* 9 | 6 | 2 | 78% */
|
|
{ 6, 3 }, /* 10 | 6 | 3 | 70% */
|
|
{ 7, 3 }, /* 11 | 7 | 3 | 73% */
|
|
{ 8, 3 }, /* 12 | 8 | 3 | 75% */
|
|
{ 9, 3 }, /* 13 | 9 | 3 | 77% */
|
|
{ 9, 4 }, /* 14 | 9 | 4 | 71% */
|
|
{ 10, 4 }, /* 15 | 10 | 4 | 73% */
|
|
{ 11, 4 }, /* 16 | 11 | 4 | 75% */
|
|
{ 12, 4 }, /* 17 | 12 | 4 | 76% */
|
|
{ 12, 5 }, /* 18 | 12 | 5 | 72% */
|
|
{ 13, 5 }, /* 19 | 13 | 5 | 74% */
|
|
{ 14, 5 }, /* 20 | 14 | 5 | 75% */
|
|
{ 15, 5 }, /* 21 | 15 | 5 | 76% */
|
|
{ 15, 6 }, /* 22 | 15 | 6 | 73% */
|
|
{ 16, 6 }, /* 23 | 16 | 6 | 74% */
|
|
{ 16, 7 }, /* 24 | 16 | 7 | 71% */
|
|
{ 16, 8 } /* 25 | 16 | 8 | 68% */
|
|
};
|
|
|
|
|
|
/****************************************************************************************
|
|
* Local data declarations
|
|
****************************************************************************************/
|
|
/** \brief CAN handle to be used in API calls. */
|
|
static FDCAN_HandleTypeDef canHandle;
|
|
|
|
|
|
/************************************************************************************//**
|
|
** \brief Search algorithm to match the desired baudrate to a possible bus
|
|
** timing configuration.
|
|
** \param baud The desired baudrate in kbps. Valid values are 10..1000.
|
|
** \param prescaler Pointer to where the value for the prescaler will be stored.
|
|
** \param tseg1 Pointer to where the value for TSEG2 will be stored.
|
|
** \param tseg2 Pointer to where the value for TSEG2 will be stored.
|
|
** \return 1 if the CAN bustiming register values were found, 0 otherwise.
|
|
**
|
|
****************************************************************************************/
|
|
static unsigned char CanGetSpeedConfig(unsigned short baud, unsigned short *prescaler,
|
|
unsigned char *tseg1, unsigned char *tseg2)
|
|
{
|
|
unsigned char cnt;
|
|
unsigned long canClockFreqkHz;
|
|
/* determine the CAN peripheral clock frequency in kHz. this code assumes that the
|
|
* HSE is used as the CAN clock source. If not, then update the code accordingly.
|
|
*/
|
|
canClockFreqkHz = BOOT_CPU_XTAL_SPEED_KHZ;
|
|
/* the CAN clock source should not be higher than 48 MHz. so only continue if this is
|
|
* the case.
|
|
*/
|
|
if (canClockFreqkHz <= 48000u)
|
|
{
|
|
/* loop through all possible time quanta configurations to find a match */
|
|
for (cnt=0; cnt < sizeof(canTiming)/sizeof(canTiming[0]); cnt++)
|
|
{
|
|
if ((canClockFreqkHz % (baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1))) == 0)
|
|
{
|
|
/* compute the prescaler that goes with this TQ configuration */
|
|
*prescaler = canClockFreqkHz/(baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1));
|
|
|
|
/* make sure the prescaler is valid */
|
|
if ( (*prescaler > 0) && (*prescaler <= 512) )
|
|
{
|
|
/* store the bustiming configuration */
|
|
*tseg1 = canTiming[cnt].tseg1;
|
|
*tseg2 = canTiming[cnt].tseg2;
|
|
/* found a good bus timing configuration */
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* could not find a good bus timing configuration */
|
|
return 0;
|
|
} /*** end of CanGetSpeedConfig ***/
|
|
|
|
|
|
/************************************************************************************//**
|
|
** \brief Initializes the CAN communication interface.
|
|
** \return none.
|
|
**
|
|
****************************************************************************************/
|
|
static void BootComCanInit(void)
|
|
{
|
|
unsigned short prescaler = 0;
|
|
unsigned char tseg1 = 0, tseg2 = 0;
|
|
FDCAN_FilterTypeDef filterConfig;
|
|
unsigned long rxMsgId = BOOT_COM_CAN_RX_MSG_ID;
|
|
|
|
/* obtain bittiming configuration information. */
|
|
CanGetSpeedConfig(BOOT_COM_CAN_BAUDRATE/1000, &prescaler, &tseg1, &tseg2);
|
|
|
|
/* set the CAN controller configuration. */
|
|
canHandle.Instance = FDCAN1;
|
|
canHandle.Init.ClockDivider = FDCAN_CLOCK_DIV1;
|
|
canHandle.Init.FrameFormat = FDCAN_FRAME_CLASSIC;
|
|
canHandle.Init.Mode = FDCAN_MODE_NORMAL;
|
|
canHandle.Init.AutoRetransmission = ENABLE;
|
|
canHandle.Init.TransmitPause = DISABLE;
|
|
canHandle.Init.ProtocolException = DISABLE;
|
|
canHandle.Init.NominalPrescaler = prescaler;
|
|
canHandle.Init.NominalSyncJumpWidth = 1;
|
|
canHandle.Init.NominalTimeSeg1 = tseg1;
|
|
canHandle.Init.NominalTimeSeg2 = tseg2;
|
|
/* FD mode is not used by this driver, so the .Init.DataXxx values are don't care. */
|
|
canHandle.Init.DataPrescaler = 1;
|
|
canHandle.Init.DataSyncJumpWidth = 1;
|
|
canHandle.Init.DataTimeSeg1 = 1;
|
|
canHandle.Init.DataTimeSeg2 = 1;
|
|
/* does the message to be received have a standard 11-bit CAN identifier? */
|
|
if ((rxMsgId & 0x80000000) == 0)
|
|
{
|
|
canHandle.Init.StdFiltersNbr = 1;
|
|
canHandle.Init.ExtFiltersNbr = 0;
|
|
}
|
|
else
|
|
{
|
|
canHandle.Init.StdFiltersNbr = 0;
|
|
canHandle.Init.ExtFiltersNbr = 1;
|
|
}
|
|
canHandle.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;
|
|
/* initialize the CAN controller. this only fails if the CAN controller hardware is
|
|
* faulty. no need to evaluate the return value as there is nothing we can do about
|
|
* a faulty CAN controller.
|
|
*/
|
|
(void)HAL_FDCAN_Init(&canHandle);
|
|
|
|
/* configure the reception filter. note that the implementation of this function
|
|
* always returns HAL_OK as long as the CAN controller is initialized, so no need to
|
|
* evaluate the return value.
|
|
*/
|
|
if ((rxMsgId & 0x80000000) == 0)
|
|
{
|
|
filterConfig.IdType = FDCAN_STANDARD_ID;
|
|
}
|
|
else
|
|
{
|
|
filterConfig.IdType = FDCAN_EXTENDED_ID;
|
|
/* negate the ID-type bit */
|
|
rxMsgId &= ~0x80000000;
|
|
}
|
|
filterConfig.FilterIndex = 0;
|
|
filterConfig.FilterType = FDCAN_FILTER_DUAL;
|
|
filterConfig.FilterConfig = FDCAN_FILTER_TO_RXFIFO0;
|
|
filterConfig.FilterID1 = rxMsgId;
|
|
filterConfig.FilterID2 = rxMsgId;
|
|
(void)HAL_FDCAN_ConfigFilter(&canHandle, &filterConfig);
|
|
|
|
/* configure global filter to reject all non-matching frames. */
|
|
HAL_FDCAN_ConfigGlobalFilter(&canHandle, FDCAN_REJECT, FDCAN_REJECT,
|
|
FDCAN_REJECT_REMOTE, FDCAN_REJECT_REMOTE);
|
|
|
|
/* start the CAN peripheral. no need to evaluate the return value as there is nothing
|
|
* we can do about a faulty CAN controller. */
|
|
(void)HAL_FDCAN_Start(&canHandle);
|
|
} /*** end of BootComCanInit ***/
|
|
|
|
|
|
/************************************************************************************//**
|
|
** \brief Receives the CONNECT request from the host, which indicates that the
|
|
** bootloader should be activated and, if so, activates it.
|
|
** \return none.
|
|
**
|
|
****************************************************************************************/
|
|
static void BootComCanCheckActivationRequest(void)
|
|
{
|
|
unsigned long rxMsgId = BOOT_COM_CAN_RX_MSG_ID;
|
|
unsigned char packetIdMatches = 0;
|
|
FDCAN_RxHeaderTypeDef rxMsgHeader;
|
|
unsigned char rxMsgData[8];
|
|
unsigned char rxMsgLen;
|
|
HAL_StatusTypeDef rxStatus = HAL_ERROR;
|
|
|
|
|
|
/* poll for received CAN messages that await processing. */
|
|
if (HAL_FDCAN_GetRxFifoFillLevel(&canHandle, FDCAN_RX_FIFO0) > 0)
|
|
{
|
|
/* attempt to read the newly received CAN message from its buffer. */
|
|
rxStatus = HAL_FDCAN_GetRxMessage(&canHandle, FDCAN_RX_FIFO0, &rxMsgHeader,
|
|
rxMsgData);
|
|
}
|
|
|
|
/* only continue processing the CAN message if something was received. */
|
|
if (rxStatus == HAL_OK)
|
|
{
|
|
/* check if this message has the configured CAN packet identifier. */
|
|
if ((rxMsgId & 0x80000000) == 0)
|
|
{
|
|
/* was an 11-bit CAN message received that matches? */
|
|
if ( (rxMsgHeader.Identifier == rxMsgId) &&
|
|
(rxMsgHeader.IdType == FDCAN_STANDARD_ID) )
|
|
{
|
|
/* set flag that a packet with a matching CAN identifier was received. */
|
|
packetIdMatches = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* negate the ID-type bit */
|
|
rxMsgId &= ~0x80000000;
|
|
/* was an 29-bit CAN message received that matches? */
|
|
if ( (rxMsgHeader.Identifier == rxMsgId) &&
|
|
(rxMsgHeader.IdType == FDCAN_EXTENDED_ID) )
|
|
{
|
|
/* set flag that a packet with a matching CAN identifier was received. */
|
|
packetIdMatches = 1;
|
|
}
|
|
}
|
|
|
|
/* only continue if a packet with a matching CAN identifier was received. */
|
|
if (packetIdMatches == 1)
|
|
{
|
|
/* obtain the CAN message length. */
|
|
rxMsgLen = (unsigned char)(rxMsgHeader.DataLength >> 16U);
|
|
/* check if this was an XCP CONNECT command */
|
|
if ((rxMsgData[0] == 0xff) && (rxMsgLen == 2))
|
|
{
|
|
/* connection request received so start the bootloader */
|
|
BootActivate();
|
|
}
|
|
}
|
|
}
|
|
} /*** end of BootComCanCheckActivationRequest ***/
|
|
#endif /* BOOT_COM_CAN_ENABLE > 0 */
|
|
|
|
|
|
/*********************************** end of boot.c *************************************/
|