CommonLibs/A51Test.cpp

163 lines
6.3 KiB
C++

/*
* A pedagogical implementation of A5/1.
*
* Copyright (C) 1998-1999: Marc Briceno, Ian Goldberg, and David Wagner
*
* The source code below is optimized for instructional value and clarity.
* Performance will be terrible, but that's not the point.
* The algorithm is written in the C programming language to avoid ambiguities
* inherent to the English language. Complain to the 9th Circuit of Appeals
* if you have a problem with that.
*
* This software may be export-controlled by US law.
*
* This software is free for commercial and non-commercial use as long as
* the following conditions are aheared to.
* Copyright remains the authors' and as such any Copyright notices in
* the code are not to be removed.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The license and distribution terms for any publicly available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution license
* [including the GNU Public License.]
*
* Background: The Global System for Mobile communications is the most widely
* deployed cellular telephony system in the world. GSM makes use of
* four core cryptographic algorithms, neither of which has been published by
* the GSM MOU. This failure to subject the algorithms to public review is all
* the more puzzling given that over 100 million GSM
* subscribers are expected to rely on the claimed security of the system.
*
* The four core GSM algorithms are:
* A3 authentication algorithm
* A5/1 "strong" over-the-air voice-privacy algorithm
* A5/2 "weak" over-the-air voice-privacy algorithm
* A8 voice-privacy key generation algorithm
*
* In April of 1998, our group showed that COMP128, the algorithm used by the
* overwhelming majority of GSM providers for both A3 and A8
* functionality was fatally flawed and allowed for cloning of GSM mobile
* phones.
* Furthermore, we demonstrated that all A8 implementations we could locate,
* including the few that did not use COMP128 for key generation, had been
* deliberately weakened by reducing the keyspace from 64 bits to 54 bits.
* The remaining 10 bits are simply set to zero!
*
* See <A HREF="http://www.scard.org/gsm">http://www.scard.org/gsm</A> for additional information.
*
* The question so far unanswered is if A5/1, the "stronger" of the two
* widely deployed voice-privacy algorithm is at least as strong as the
* key. Meaning: "Does A5/1 have a work factor of at least 54 bits"?
* Absent a publicly available A5/1 reference implementation, this question
* could not be answered. We hope that our reference implementation below,
* which has been verified against official A5/1 test vectors, will provide
* the cryptographic community with the base on which to construct the
* answer to this important question.
*
* Initial indications about the strength of A5/1 are not encouraging.
* A variant of A5, while not A5/1 itself, has been estimated to have a
* work factor of well below 54 bits. See http://jya.com/crack-a5.htm for
* background information and references.
*
* With COMP128 broken and A5/1 published below, we will now turn our attention
* to A5/2. The latter has been acknowledged by the GSM community to have
* been specifically designed by intelligence agencies for lack of security.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "./A51.h"
/* Test the code by comparing it against
* a known-good test vector. */
void test() {
byte key[8] = {0x12, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF};
word frame = 0x134;
byte goodAtoB[15] = { 0x53, 0x4E, 0xAA, 0x58, 0x2F, 0xE8, 0x15,
0x1A, 0xB6, 0xE1, 0x85, 0x5A, 0x72, 0x8C, 0x00 };
byte goodBtoA[15] = { 0x24, 0xFD, 0x35, 0xA3, 0x5D, 0x5F, 0xB6,
0x52, 0x6D, 0x32, 0xF9, 0x06, 0xDF, 0x1A, 0xC0 };
byte AtoB[15], BtoA[15];
int i, failed=0;
A51_GSM(key, 64, frame, AtoB, BtoA);
/* Compare against the test vector. */
for (i=0; i<15; i++)
if (AtoB[i] != goodAtoB[i])
failed = 1;
for (i=0; i<15; i++)
if (BtoA[i] != goodBtoA[i])
failed = 1;
/* Print some debugging output. */
printf("key: 0x");
for (i=0; i<8; i++)
printf("%02X", key[i]);
printf("\n");
printf("frame number: 0x%06X\n", (unsigned int)frame);
printf("known good output:\n");
printf(" A->B: 0x");
for (i=0; i<15; i++)
printf("%02X", goodAtoB[i]);
printf(" B->A: 0x");
for (i=0; i<15; i++)
printf("%02X", goodBtoA[i]);
printf("\n");
printf("observed output:\n");
printf(" A->B: 0x");
for (i=0; i<15; i++)
printf("%02X", AtoB[i]);
printf(" B->A: 0x");
for (i=0; i<15; i++)
printf("%02X", BtoA[i]);
printf("\n");
if (!failed) {
printf("Self-check succeeded: everything looks ok.\n");
} else {
/* Problems! The test vectors didn't compare*/
printf("\nI don't know why this broke; contact the authors.\n");
exit(1);
}
printf("time test\n");
int n = 10000;
float t = clock();
for (i = 0; i < n; i++) {
A51_GSM(key, 64, frame, AtoB, BtoA);
}
t = (clock() - t) / (CLOCKS_PER_SEC * (float)n);
printf("A51_GSM takes %g seconds per iteration\n", t);
}
int main(void) {
test();
return 0;
}