OpenBTS-UMTS/GSM/GSML3RRElements.cpp

705 lines
16 KiB
C++
Raw Permalink Normal View History

2014-10-16 14:42:05 -07:00
/**@file @brief Radio Resource messages, GSM 04.08 9.1. */
/*
* OpenBTS provides an open source alternative to legacy telco protocols and
* traditionally complex, proprietary hardware systems.
*
* Copyright 2008, 2009 Free Software Foundation, Inc.
* Copyright 2010 Kestrel Signal Processing, Inc.
* Copyright 2014 Range Networks, Inc.
*
* This software is distributed under the terms of the GNU Affero General
* Public License version 3. See the COPYING and NOTICE files in the main
* directory for licensing information.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
*/
#include <iterator> // for L3APDUData::text
#include "GSML3RRElements.h"
#include <Logger.h>
using namespace std;
using namespace GSM;
void L3CellOptionsBCCH::writeV(L3Frame& dest, size_t &wp) const
{
dest.writeField(wp,0,1);
dest.writeField(wp,mPWRC,1);
dest.writeField(wp,mDTX,2);
dest.writeField(wp,mRADIO_LINK_TIMEOUT,4);
}
void L3CellOptionsBCCH::text(ostream& os) const
{
os << "PWRC=" << mPWRC;
os << " DTX=" << mDTX;
os << " RADIO_LINK_TIMEOUT=" << mRADIO_LINK_TIMEOUT;
}
void L3CellOptionsSACCH::writeV(L3Frame& dest, size_t &wp) const
{
dest.writeField(wp,(mDTX>>2)&0x01,1);
dest.writeField(wp,mPWRC,1);
dest.writeField(wp,mDTX&0x03,2);
dest.writeField(wp,mRADIO_LINK_TIMEOUT,4);
}
void L3CellOptionsSACCH::text(ostream& os) const
{
os << "PWRC=" << mPWRC;
os << " DTX=" << mDTX;
os << " RADIO_LINK_TIMEOUT=" << mRADIO_LINK_TIMEOUT;
}
void L3CellSelectionParameters::writeV(L3Frame& dest, size_t &wp) const
{
dest.writeField(wp,mCELL_RESELECT_HYSTERESIS,3);
dest.writeField(wp,mMS_TXPWR_MAX_CCH,5);
dest.writeField(wp,mACS,1);
dest.writeField(wp,mNECI,1);
dest.writeField(wp,mRXLEV_ACCESS_MIN,6);
}
void L3CellSelectionParameters::text(ostream& os) const
{
os << "CELL-RESELECT-HYSTERESIS=" << mCELL_RESELECT_HYSTERESIS;
os << " MS-TXPWR-MAX-CCH=" << mMS_TXPWR_MAX_CCH;
os << " ACS=" << mACS;
os << " NECI=" << mNECI;
os << " RXLEV-ACCESS-MIN=" << mRXLEV_ACCESS_MIN;
}
void L3ControlChannelDescription::writeV(L3Frame& dest, size_t &wp) const
{
dest.writeField(wp,0,1);
dest.writeField(wp,mATT,1);
dest.writeField(wp,mBS_AG_BLKS_RES,3);
dest.writeField(wp,mCCCH_CONF,3);
dest.writeField(wp,0,5);
dest.writeField(wp,mBS_PA_MFRMS,3);
dest.writeField(wp,mT3212,8);
}
void L3ControlChannelDescription::text(ostream& os) const
{
os << "ATT=" << mATT;
os << " BS_AG_BLKS_RES=" << mBS_AG_BLKS_RES;
os << " CCCH_CONF=" << mCCCH_CONF;
os << " BS_PA_MFRMS=" << mBS_PA_MFRMS;
os << " T3212=" << mT3212;
}
bool L3FrequencyList::contains(unsigned wARFCN) const
{
for (unsigned i=0; i<mARFCNs.size(); i++) {
if (mARFCNs[i]==wARFCN) return true;
}
return false;
}
unsigned L3FrequencyList::base() const
{
if (mARFCNs.size()==0) return 0;
unsigned retVal = mARFCNs[0];
for (unsigned i=1; i<mARFCNs.size(); i++) {
unsigned thisVal = mARFCNs[i];
if (thisVal<retVal) retVal=thisVal;
}
return retVal;
}
unsigned L3FrequencyList::spread() const
{
if (mARFCNs.size()==0) return 0;
unsigned max = mARFCNs[0];
for (unsigned i=0; i<mARFCNs.size(); i++) {
if (mARFCNs[i]>max) max=mARFCNs[i];
}
return max - base();
}
void L3FrequencyList::writeV(L3Frame& dest, size_t &wp) const
{
// If this were used as Frequency List, it had to be coded
// as the variable bit map format, GSM 04.08 10.5.2.13.7.
// But it is used as Cell Channel Description and is coded
// as the variable bit map format, GSM 04.08 10.5.2.1b.7.
// Difference is in abscence of Length field.
// The header occupies first 7 most significant bits of
// the first V-part octet and should be 1000111b=0x47 for
// the variable length bitmap.
dest.writeField(wp,0x47,7);
// base ARFCN
unsigned baseARFCN = base();
dest.writeField(wp,baseARFCN,10);
// bit map
unsigned delta = spread();
unsigned numBits = 8*lengthV() - 17;
if (numBits<delta) { LOG(ALERT) << "L3FrequencyList cannot encode full ARFCN set"; }
for (unsigned i=0; i<numBits; i++) {
unsigned thisARFCN = baseARFCN + 1 + i;
if (contains(thisARFCN)) dest.writeField(wp,1,1);
else dest.writeField(wp,0,1);
}
}
void L3FrequencyList::text(ostream& os) const
{
int size = mARFCNs.size();
for (int i=0; i<size; i++) {
os << mARFCNs[i] << " ";
}
}
void L3CellChannelDescription::writeV(L3Frame& dest, size_t& wp) const
{
dest.fillField(wp,0,3);
L3FrequencyList::writeV(dest,wp);
}
void L3NeighborCellsDescription::writeV(L3Frame& dest, size_t& wp) const
{
dest.fillField(wp,0,3);
L3FrequencyList::writeV(dest,wp);
}
void L3NeighborCellsDescription::text(ostream& os) const
{
os << "EXT-IND=0 BA-IND=0 ";
os << " ARFCNs=(";
L3FrequencyList::text(os);
os << ")";
}
void L3NCCPermitted::writeV(L3Frame& dest, size_t &wp) const
{
dest.writeField(wp,mPermitted,8);
}
void L3NCCPermitted::text(ostream& os) const
{
os << hex << "0x" << mPermitted << dec;
}
void L3RACHControlParameters::writeV(L3Frame& dest, size_t &wp) const
{
// GMS 04.08 10.5.2.29
dest.writeField(wp, mMaxRetrans, 2);
dest.writeField(wp, mTxInteger, 4);
dest.writeField(wp, mCellBarAccess, 1);
dest.writeField(wp, mRE, 1);
dest.writeField(wp, mAC, 16);
}
void L3RACHControlParameters::text(ostream& os) const
{
os << "maxRetrans=" << mMaxRetrans;
os << " txInteger=" << mTxInteger;
os << " cellBarAccess=" << mCellBarAccess;
os << " RE=" << mRE;
os << hex << " AC=0x" << mAC << dec;
}
void L3PageMode::writeV(L3Frame& dest, size_t &wp) const
{
// PageMode is 1/2 octet. Spare[3:2], PM[1:0]
dest.writeField(wp, 0x00, 2);
dest.writeField(wp, mPageMode, 2);
}
void L3PageMode::parseV( const L3Frame &src, size_t &rp)
{
// Read out spare bits.
rp += 2;
// Read out PageMode.
mPageMode = src.readField(rp, 2);
}
void L3PageMode::text(ostream& os) const
{
os << mPageMode;
}
void L3DedicatedModeOrTBF::writeV( L3Frame& dest, size_t &wp )const
{
// 1/2 Octet.
dest.writeField(wp, 0, 1);
dest.writeField(wp, mTMA, 1);
dest.writeField(wp, mDownlink, 1);
dest.writeField(wp, mDMOrTBF, 1);
}
void L3DedicatedModeOrTBF::text(ostream& os) const
{
os << "TMA=" << mTMA;
os << " Downlink=" << mDownlink;
os << " DMOrTBF=" << mDMOrTBF;
}
void L3ChannelDescription::writeV( L3Frame &dest, size_t &wp ) const
{
// GSM 04.08 10.5.2.5
// Channel Description Format (non-hopping)
// 7 6 5 4 3 2 1 0
// [ TSC ][ H=0 ][ SPARE(0,0)][ ARFCN[9:8] ] Octet 3
// [ ARFCN[7:0] ] Octet 4 H=0
//
// HACK -- Hard code for non-hopping.
assert(mHFlag==0);
dest.writeField(wp,mTypeAndOffset,5);
dest.writeField(wp,mTN,3);
dest.writeField(wp,mTSC,3);
dest.writeField(wp,0,3); // H=0 + 2 spares
dest.writeField(wp,mARFCN,10);
}
void L3ChannelDescription::parseV(const L3Frame& src, size_t &rp)
{
// GSM 04.08 10.5.2.5
mTypeAndOffset = (TypeAndOffset)src.readField(rp,5);
mTN = src.readField(rp,3);
mTSC = src.readField(rp,3);
mHFlag = src.readField(rp,1);
if (mHFlag) {
mMAIO = src.readField(rp,6);
mHSN = src.readField(rp,6);
} else {
rp += 2; // skip 2 spare bits
mARFCN = src.readField(rp,10);
}
}
void L3ChannelDescription::text(std::ostream& os) const
{
os << "typeAndOffset=" << mTypeAndOffset;
os << " TN=" << mTN;
os << " TSC=" << mTSC;
os << " ARFCN=" << mARFCN;
}
void L3RequestReference::writeV( L3Frame &dest, size_t &wp ) const
{
// Request Reference Format.
// 7 6 5 4 3 2 1 0
// [ RequestReference [7:0] ] Octet 2
// [ T1[4:0] ][ T3[5:3] ] Octet 3
// [ T3[2:0] ][ T2[4:0] ] Octet 4
dest.writeField(wp, mRA, 8);
dest.writeField(wp, mT1p, 5);
dest.writeField(wp, mT3, 6);
dest.writeField(wp, mT2, 5);
}
void L3RequestReference::text(ostream& os) const
{
os << "RA=" << mRA;
os << " T1'=" << mT1p;
os << " T2=" << mT2;
os << " T3=" << mT3;
}
void L3TimingAdvance::writeV( L3Frame &dest, size_t &wp ) const
{
dest.writeField(wp, 0x00, 2);
dest.writeField(wp, mTimingAdvance, 6);
}
void L3TimingAdvance::text(ostream& os) const
{
os << mTimingAdvance;
}
void L3RRCause::writeV( L3Frame &dest, size_t &wp ) const
{
dest.writeField(wp, mCauseValue, 8);
}
void L3RRCause::parseV( const L3Frame &src, size_t &rp )
{
mCauseValue = src.readField(rp, 8);
}
void L3RRCause::text(ostream& os) const
{
os << "0x" << hex << mCauseValue << dec;
}
void L3PowerCommand::writeV( L3Frame &dest, size_t &wp )const
{
dest.writeField(wp, 0, 3);
dest.writeField(wp, mCommand, 5);
}
void L3PowerCommand::text(ostream& os) const
{
os << mCommand;
}
void L3ChannelMode::writeV( L3Frame& dest, size_t &wp) const
{
dest.writeField(wp, mMode, 8);
}
void L3ChannelMode::parseV(const L3Frame& src, size_t& rp)
{
mMode = (Mode)src.readField(rp,8);
}
ostream& GSM::operator<<(ostream& os, L3ChannelMode::Mode mode)
{
switch (mode) {
case L3ChannelMode::SignallingOnly: os << "signalling"; break;
case L3ChannelMode::SpeechV1: os << "speech1"; break;
case L3ChannelMode::SpeechV2: os << "speech2"; break;
case L3ChannelMode::SpeechV3: os << "speech3"; break;
default: os << "?" << (int)mode << "?";
}
return os;
}
void L3ChannelMode::text(ostream& os) const
{
os << mMode;
}
// Application Information IEs
// APDU ID
void L3APDUID::writeV( L3Frame& dest, size_t &wp) const
{
// APDU ID is 1/2 octet. Protocol Identifier [3:0]
dest.writeField(wp,mProtocolIdentifier,4);
}
void L3APDUID::parseV( const L3Frame &src, size_t &rp)
{
// Read out Protocol Identifier.
mProtocolIdentifier = src.readField(rp, 4);
}
void L3APDUID::text(ostream& os) const
{
os << mProtocolIdentifier;
}
// APDU Flags
void L3APDUFlags::writeV( L3Frame& dest, size_t &wp) const
{
// APDU Flags is 1/2 octet. Protocol Identifier [3:0]
dest.writeField(wp,0,1); // spare
dest.writeField(wp,mCR,1); // C/R
dest.writeField(wp,mFirstSegment,1);
dest.writeField(wp,mLastSegment,1);
}
void L3APDUFlags::parseV( const L3Frame &src, size_t &rp)
{
// Read out Protocol Identifier.
rp += 1; // skip spare
mCR = src.readField(rp, 1);
mFirstSegment = src.readField(rp, 1);
mLastSegment = src.readField(rp, 1);
}
void L3APDUFlags::text(ostream& os) const
{
os << mCR << "," << mFirstSegment << "," << mLastSegment;
}
// APDU Data
L3APDUData::~L3APDUData()
{
}
L3APDUData::L3APDUData()
:L3ProtocolElement()
{
}
L3APDUData::L3APDUData(BitVector data)
:L3ProtocolElement()
,mData(data)
{
}
void L3APDUData::writeV( L3Frame& dest, size_t &wp) const
{
// we only need to write the data part
// TODO - single line please. copy / memcpy, anything better then a for loop
LOG(DEBUG) << "L3APDUData: writeV " << mData.size() << " bits";
mData.copyToSegment(dest, wp);
wp += mData.size() / 8;
}
void L3APDUData::parseV( const L3Frame& src, size_t &rp, size_t expectedLength )
{
LOG(DEBUG) << "L3APDUData: parseV " << expectedLength << " bytes";
mData.resize(expectedLength*8);
src.copyToSegment(mData, rp, expectedLength*8); // expectedLength is bytes, not bits
//for ( size_t i = 0 ; i < expectedLength ; ++i)
// mData[i] = src.readField(rp, 8);
}
void L3APDUData::text(ostream& os) const
{
// TODO - use the following two lines (get rid of the "char / char*" error)
//std::ostream_iterator<std::string> output( os, "" );
//std::copy( mData.begin(), mData.end(), output );
for (size_t i = 0 ; i < mData.size() ; ++i) {
os << (mData[i] ? "1" : "0");
}
}
void L3MeasurementResults::parseV(const L3Frame& frame, size_t &rp)
{
// GSM 04.08 10.5.2.20
mBA_USED = frame.readField(rp,1);
mDTX_USED = frame.readField(rp,1);
mRXLEV_FULL_SERVING_CELL = frame.readField(rp,6);
rp++; // spare
mMEAS_VALID = frame.readField(rp,1);
mRXLEV_SUB_SERVING_CELL = frame.readField(rp,6);
rp++; // spare
mRXQUAL_FULL_SERVING_CELL = frame.readField(rp,3);
mRXQUAL_SUB_SERVING_CELL = frame.readField(rp,3);
mNO_NCELL = frame.readField(rp,3);
for (unsigned i=0; i<6; i++) {
mRXLEV_NCELL[i] = frame.readField(rp,6);
mBCCH_FREQ_NCELL[i] = frame.readField(rp,5);
mBSIC_NCELL[i] = frame.readField(rp,6);
}
}
void L3MeasurementResults::text(ostream& os) const
{
// GSM 04.08 10.5.2.20
os << "BA_USED=" << mBA_USED;
os << " DTX_USED=" << mDTX_USED;
os << " MEAS_VALID=" << mMEAS_VALID;
// Note that the value of the MEAS-VALID bit is reversed
// from what you might expect.
if (mMEAS_VALID) return;
os << " RXLEV_FULL_SERVING_CELL=" << mRXLEV_FULL_SERVING_CELL;
os << " RXLEV_SUB_SERVING_CELL=" << mRXLEV_SUB_SERVING_CELL;
os << " RXQUAL_FULL_SERVING_CELL=" << mRXQUAL_FULL_SERVING_CELL;
os << " RXQUAL_SUB_SERVING_CELL=" << mRXQUAL_SUB_SERVING_CELL;
os << " NO_NCELL=" << mNO_NCELL;
// no measurements?
if (mNO_NCELL==0) return;
// no neighbor list?
if (mNO_NCELL==7) return;
for (unsigned i=0; i<mNO_NCELL; i++) {
os << " RXLEV_NCELL" << i+1 << "=" << mRXLEV_NCELL[i];
os << " BCCH_FREQ_NCELL" << i+1 << "=" << mBCCH_FREQ_NCELL[i];
os << " BSIC_NCELL" << i+1 << "=" << mBSIC_NCELL[i];
}
}
unsigned L3MeasurementResults::RXLEV_NCELL(unsigned * target) const
{
for (unsigned i=0; i<mNO_NCELL; i++) target[i] = mRXLEV_NCELL[i];
return mNO_NCELL;
}
unsigned L3MeasurementResults::BCCH_FREQ_NCELL(unsigned * target) const
{
for (unsigned i=0; i<mNO_NCELL; i++) target[i] = mBCCH_FREQ_NCELL[i];
return mNO_NCELL;
}
unsigned L3MeasurementResults::BSIC_NCELL(unsigned * target) const
{
for (unsigned i=0; i<mNO_NCELL; i++) target[i] = mBSIC_NCELL[i];
return mNO_NCELL;
}
int L3MeasurementResults::decodeLevToDBm(unsigned lev) const
{
// See GSM 05.08 8.1.4.
// SCALE is 0 for anything but the ENHANCED MEASUREMENT REPORT message.
return -111 + lev;
}
float L3MeasurementResults::decodeQualToBER(unsigned qual) const
{
// See GSM 05.08 8.2.4.
// Convert lowest value as "0" instead of 0.14%.
static const float vals[] = {0.0, 0.28, 0.57, 1.13, 2.26, 4.53, 9.05, 18.10};
assert(qual<8);
return 0.01*vals[qual];
}
L3SI3RestOctets::L3SI3RestOctets()
:L3RestOctets(),
mHaveSelectionParameters(false),
mCBQ(0),mCELL_RESELECT_OFFSET(0),
mTEMPORARY_OFFSET(0),
mPENALTY_TIME(0)
{
// See GSM 04.08 10.5.2.34 and 05.08 9 Table 1.
if (!gConfig.defines("GSM.SI3RO")) return;
// Optional Cell Selection Parameters.
// CELL_BAR_QUALIFY. 1 bit. Default value is 0.
if (gConfig.defines("GSM.SI3RO.CBQ")) {
mCBQ = gConfig.getNum("GSM.SI3RO.CBQ");
mHaveSelectionParameters = true;
}
// CELL_RESELECT_OFFSET. 6 bits. Default value is 0.
// C2 offset in 2 dB steps
if (gConfig.defines("GSM.SI3RO.CRO")) {
mCELL_RESELECT_OFFSET = gConfig.getNum("GSM.SI3RO.CRO");
mHaveSelectionParameters = true;
}
// Another offset to C2 in 10 dB steps, applied during penalty time.
// 3 bits. // Default is 0 dB but "7" means "infinity".
if (gConfig.defines("GSM.SI3RO.TEMPORARY_OFFSET")) {
mTEMPORARY_OFFSET = gConfig.getNum("GSM.SI3RO.TEMPORARY_OFFSET");
mHaveSelectionParameters = true;
}
// The time for which the temporary offset is applied, 20*(n+1).
if (gConfig.defines("GSM.SI3RO.PENALTY_TIME")) {
mPENALTY_TIME = gConfig.getNum("GSM.SI3RO.PENALTY_TIME");
mHaveSelectionParameters = true;
}
}
size_t L3SI3RestOctets::lengthV() const
{
size_t sumBits = 0;
if (mHaveSelectionParameters) sumBits += 1 + 1+6+3+5;
size_t octets = sumBits/8;
if (sumBits%8) octets += 1;
return octets;
}
void L3SI3RestOctets::writeV(L3Frame& dest, size_t &wp) const
{
if (mHaveSelectionParameters) {
dest.writeH(wp);
dest.writeField(wp,mCBQ,1);
dest.writeField(wp,mCELL_RESELECT_OFFSET,6);
dest.writeField(wp,mTEMPORARY_OFFSET,3);
dest.writeField(wp,mPENALTY_TIME,5);
}
}
void L3SI3RestOctets::text(ostream& os) const
{
if (mHaveSelectionParameters) {
os << "CBQ=" << mCBQ;
os << " CELL_RESELECT_OFFSET=" << mCELL_RESELECT_OFFSET;
os << " TEMPORARY_OFFSET=" << mTEMPORARY_OFFSET;
os << " PANALTY_TIME=" << mPENALTY_TIME;
}
}
// vim: ts=4 sw=4