OpenBTS-UMTS/TransceiverRAD1/Complex.h

266 lines
6.8 KiB
C++

/**@file templates for Complex classes
unlike the built-in complex<> templates, these inline most operations for speed
*/
/*
* OpenBTS provides an open source alternative to legacy telco protocols and
* traditionally complex, proprietary hardware systems.
*
* Copyright 2008 Free Software Foundation, Inc.
* Copyright 2014 Range Networks, Inc.
*
* This software is distributed under the terms of the GNU General Public
* License version 3. See the COPYING and NOTICE files in the current
* directory for licensing information.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
*/
#ifndef COMPLEXCPP_H
#define COMPLEXCPP_H
#include <math.h>
#include <ostream>
template<class Real> class Complex {
public:
Real r, i;
/**@name constructors */
//@{
/**@name from real */
//@{
Complex(Real real, Real imag) {r=real; i=imag;} // x=complex(a,b)
Complex(Real real) {r=real; i=0;} // x=complex(a)
//@}
/**@name from nothing */
//@{
Complex() {r=(Real)0; i=(Real)0;} // x=complex()
//@}
/**@name from other complex */
//@{
Complex(const Complex<float>& z) {r=z.r; i=z.i;} // x=complex(z)
Complex(const Complex<double>& z) {r=z.r; i=z.i;} // x=complex(z)
Complex(const Complex<long double>& z) {r=z.r; i=z.i;} // x=complex(z)
//@}
//@}
/**@name casting up from basic numeric types */
//@{
Complex& operator=(char a) { r=(Real)a; i=(Real)0; return *this; }
Complex& operator=(int a) { r=(Real)a; i=(Real)0; return *this; }
Complex& operator=(long int a) { r=(Real)a; i=(Real)0; return *this; }
Complex& operator=(short a) { r=(Real)a; i=(Real)0; return *this; }
Complex& operator=(float a) { r=(Real)a; i=(Real)0; return *this; }
Complex& operator=(double a) { r=(Real)a; i=(Real)0; return *this; }
Complex& operator=(long double a) { r=(Real)a; i=(Real)0; return *this; }
//@}
/**@name arithmetic */
//@{
/**@ binary operators */
//@{
Complex operator+(const Complex<Real>& a) const { return Complex<Real>(r+a.r, i+a.i); }
Complex operator+(Real a) const { return Complex<Real>(r+a,i); }
Complex operator-(const Complex<Real>& a) const { return Complex<Real>(r-a.r, i-a.i); }
Complex operator-(Real a) const { return Complex<Real>(r-a,i); }
Complex operator*(const Complex<Real>& a) const { return Complex<Real>(r*a.r-i*a.i, r*a.i+i*a.r); }
Complex operator*(Real a) const { return Complex<Real>(r*a, i*a); }
Complex operator/(const Complex<Real>& a) const { return operator*(a.inv()); }
Complex operator/(Real a) const { return Complex<Real>(r/a, i/a); }
//@}
/*@name component-wise product */
//@{
Complex operator&(const Complex<Real>& a) const { return Complex<Real>(r*a.r, i*a.i); }
//@}
/*@name inplace operations */
//@{
Complex& operator+=(const Complex<Real>&);
Complex& operator-=(const Complex<Real>&);
Complex& operator*=(const Complex<Real>&);
Complex& operator/=(const Complex<Real>&);
Complex& operator+=(Real);
Complex& operator-=(Real);
Complex& operator*=(Real);
Complex& operator/=(Real);
//@}
//@}
/**@name comparisons */
//@{
bool operator==(const Complex<Real>& a) const { return ((i==a.i)&&(r==a.r)); }
bool operator!=(const Complex<Real>& a) const { return ((i!=a.i)||(r!=a.r)); }
bool operator<(const Complex<Real>& a) const { return norm2()<a.norm2(); }
bool operator>(const Complex<Real>& a) const { return norm2()>a.norm2(); }
//@}
/// reciprocation
Complex inv() const;
// unary functions -- inlined
/**@name unary functions */
//@{
/**@name inlined */
//@{
Complex conj() const { return Complex<Real>(r,-i); }
Real norm2() const { return i*i+r*r; }
Complex flip() const { return Complex<Real>(i,r); }
Real real() const { return r;}
Real imag() const { return i;}
Complex neg() const { return Complex<Real>(-r, -i); }
bool isZero() const { return ((r==(Real)0) && (i==(Real)0)); }
//@}
/**@name not inlined due to outside calls */
//@{
Real abs() const { return ::sqrt(norm2()); }
Real arg() const { return ::atan2(i,r); }
float dB() const { return 10.0*log10(norm2()); }
Complex exp() const { return expj(i)*(::exp(r)); }
Complex unit() const; ///< unit phasor with same angle
Complex log() const { return Complex(::log(abs()),arg()); }
Complex pow(double n) const { return expj(arg()*n)*(::pow(abs(),n)); }
Complex sqrt() const { return pow(0.5); }
//@}
//@}
};
/**@name standard Complex manifestations */
//@{
typedef Complex<float> complex;
typedef Complex<double> dcomplex;
typedef Complex<short> complex16;
typedef Complex<long> complex32;
//@}
template<class Real> inline Complex<Real> Complex<Real>::inv() const
{
Real nVal;
nVal = norm2();
return Complex<Real>(r/nVal, -i/nVal);
}
template<class Real> Complex<Real>& Complex<Real>::operator+=(const Complex<Real>& a)
{
r += a.r;
i += a.i;
return *this;
}
template<class Real> Complex<Real>& Complex<Real>::operator*=(const Complex<Real>& a)
{
operator*(a);
return *this;
}
template<class Real> Complex<Real>& Complex<Real>::operator-=(const Complex<Real>& a)
{
r -= a.r;
i -= a.i;
return *this;
}
template<class Real> Complex<Real>& Complex<Real>::operator/=(const Complex<Real>& a)
{
operator/(a);
return *this;
}
/* op= style operations with reals */
template<class Real> Complex<Real>& Complex<Real>::operator+=(Real a)
{
r += a;
return *this;
}
template<class Real> Complex<Real>& Complex<Real>::operator*=(Real a)
{
r *=a;
i *=a;
return *this;
}
template<class Real> Complex<Real>& Complex<Real>::operator-=(Real a)
{
r -= a;
return *this;
}
template<class Real> Complex<Real>& Complex<Real>::operator/=(Real a)
{
r /= a;
i /= a;
return *this;
}
template<class Real> Complex<Real> Complex<Real>::unit() const
{
Real absVal = abs();
return (Complex<Real>(r/absVal, i/absVal));
}
/**@name complex functions outside of the Complex<> class. */
//@{
/** this allows type-commutative multiplication */
template<class Real> Complex<Real> operator*(Real a, const Complex<Real>& z)
{
return Complex<Real>(z.r*a, z.i*a);
}
/** this allows type-commutative addition */
template<class Real> Complex<Real> operator+(Real a, const Complex<Real>& z)
{
return Complex<Real>(z.r+a, z.i);
}
/** this allows type-commutative subtraction */
template<class Real> Complex<Real> operator-(Real a, const Complex<Real>& z)
{
return Complex<Real>(z.r-a, z.i);
}
/// e^jphi
template<class Real> Complex<Real> expj(Real phi)
{
return Complex<Real>(cos(phi),sin(phi));
}
/// phasor expression of a complex number
template<class Real> Complex<Real> phasor(Real C, Real phi)
{
return (expj(phi)*C);
}
/// formatted stream output
template<class Real> std::ostream& operator<<(std::ostream& os, const Complex<Real>& z)
{
os << z.r << ' ';
//os << z.r << ", ";
//if (z.i>=0) { os << "+"; }
os << z.i << "j";
os << "\n";
return os;
}
//@}
#endif