OpenBTS-UMTS/UMTS/sigProcLibTest.cpp

161 lines
3.9 KiB
C++

/*
* OpenBTS provides an open source alternative to legacy telco protocols and
* traditionally complex, proprietary hardware systems.
*
* Copyright 2008, 2010 Kestrel Signal Processing, Inc.
* Copyright 2014 Range Networks, Inc.
*
* This software is distributed under the terms of the GNU Affero General
* Public License version 3. See the COPYING and NOTICE files in the main
* directory for licensing information.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
*/
#include "sigProcLib.h"
//#include "radioInterface.h"
#include <Logger.h>
#include <Configuration.h>
using namespace std;
ConfigurationTable gConfig;
int main(int argc, char **argv) {
gLogInit("sigProcLibTest","DEBUG");
int samplesPerSymbol = 1;
int TSC = 2;
sigProcLibSetup(samplesPerSymbol);
signalVector *gsmPulse = generateGSMPulse(2,samplesPerSymbol);
cout << *gsmPulse << endl;
signalVector duh(600);
duh.fill(1.0);
frequencyShift(&duh,&duh,-2.0*M_PI*(400.0/1083.0));
cout << duh;
exit(1);
BitVector RACHBurstStart = "01010101";
BitVector RACHBurstRest = "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000";
BitVector RACHBurst(BitVector(RACHBurstStart,gRACHSynchSequence),RACHBurstRest);
signalVector *RACHSeq = modulateBurst(RACHBurst,
*gsmPulse,
9,
samplesPerSymbol);
generateRACHSequence(*gsmPulse,samplesPerSymbol);
complex a; float t;
detectRACHBurst(*RACHSeq, 5, samplesPerSymbol,&a,&t);
//cout << *RACHSeq << endl;
//signalVector *autocorr = correlate(RACHSeq,RACHSeq,NULL,NO_DELAY);
//cout << *autocorr;
//exit(1);
/*signalVector x(6500);
x.fill(1.0);
frequencyShift(&x,&x,0.48*M_PI);
signalVector *y = polyphaseResampleVector(x,96,65,NULL);
cout << *y << endl;
exit(1);*/
//CommSig normalBurstSeg = "0000000000000000000000000000000000000000000000000000000000000";
BitVector normalBurstSeg = "0000101010100111110010101010010110101110011000111001101010000";
BitVector normalBurst(BitVector(normalBurstSeg,gTrainingSequence[TSC]),normalBurstSeg);
generateMidamble(*gsmPulse,samplesPerSymbol,TSC);
signalVector *modBurst = modulateBurst(normalBurst,*gsmPulse,
0,samplesPerSymbol);
//delayVector(*rsVector2,6.932);
complex ampl = 1;
float TOA = 0;
//modBurst = rsVector2;
//delayVector(*modBurst,0.8);
/*
signalVector channelResponse(4);
signalVector::iterator c=channelResponse.begin();
*c = (complex) 9000.0; c++;
*c = (complex) 0.4*9000.0; c++; c++;
*c = (complex) -1.2*0;
signalVector *guhBurst = convolve(modBurst,&channelResponse,NULL,NO_DELAY);
delete modBurst; modBurst = guhBurst;
*/
signalVector *chanResp;
/*
double noisePwr = 0.001/sqrtf(2);
signalVector *noise = gaussianNoise(modBurst->size(),noisePwr);
*/
float chanRespOffset;
analyzeTrafficBurst(*modBurst,TSC,8.0,samplesPerSymbol,&ampl,&TOA,1,true,&chanResp,&chanRespOffset);
//addVector(*modBurst,*noise);
cout << "ampl:" << ampl << endl;
cout << "TOA: " << TOA << endl;
//cout << "chanResp: " << *chanResp << endl;
SoftVector *demodBurst = demodulateBurst(*modBurst,*gsmPulse,samplesPerSymbol,(complex) ampl, TOA);
cout << *demodBurst << endl;
/*
COUT("chanResp: " << *chanResp);
signalVector *w,*b;
designDFE(*chanResp,1.0/noisePwr,7,&w,&b);
COUT("w: " << *w);
COUT("b: " << *b);
SoftSig *DFEBurst = equalizeBurst(*modBurst,TOA-chanRespOffset,samplesPerSymbol,*w,*b);
COUT("DFEBurst: " << *DFEBurst);
delete gsmPulse;
delete RACHSeq;
delete modBurst;
delete sendLPF;
delete rcvLPF;
delete rsVector;
//delete rsVector2;
delete autocorr;
delete chanResp;
delete noise;
delete demodBurst;
delete w;
delete b;
delete DFEBurst;
*/
sigProcLibDestroy();
}