OpenBTS-UMTS/TransceiverRAD1/RAD1Device.cpp

648 lines
18 KiB
C++

/*
* OpenBTS provides an open source alternative to legacy telco protocols and
* traditionally complex, proprietary hardware systems.
*
* Copyright 2008, 2009 Free Software Foundation, Inc.
* Copyright 2014 Range Networks, Inc.
*
* This software is distributed under the terms of the GNU General Public
* License version 3. See the COPYING and NOTICE files in the current
* directory for licensing information.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
*/
/*
Compilation Flags
SWLOOPBACK compile for software loopback testing
*/
#include <unistd.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "Threads.h"
#include "RAD1Device.h"
#include <Logger.h>
using namespace std;
unsigned char* write_it(unsigned v, unsigned char *s) {
s[0] = (v>>16) & 0x0ff;
s[1] = (v>>8) & 0x0ff;
s[2] = (v) & 0x0ff;
return s;
}
const float RAD1Device::LO_OFFSET = 4.0e6;
const double RAD1Device::masterClockRate = (double) 61.44e6;
bool RAD1Device::compute_regs(double freq,
unsigned *R,
unsigned *control,
unsigned *N,
double *actual_freq)
{
if (freq < 1.2e9) {
DIV2 = 1;
freq_mult = 2;
}
else {
DIV2 = 0;
freq_mult = 1;
}
float phdet_freq = 13.0e6/(float) R_DIV;
int desired_n = (int) round(freq*freq_mult/phdet_freq);
*actual_freq = desired_n * phdet_freq/freq_mult;
float B = floor(desired_n/16);
float A = desired_n - 16*B;
unsigned B_DIV = int(B);
unsigned A_DIV = int(A);
if (B < A) return false;
*R = (R_RSV<<22) |
(BSC << 20) |
(TEST << 19) |
(LDP << 18) |
(ABP << 16) |
(R_DIV << 2);
*control = (P<<22) |
(PD<<20) |
(CP2 << 17) |
(CP1 << 14) |
(PL << 12) |
(MTLD << 11) |
(CPG << 10) |
(CP3S << 9) |
(PDP << 8) |
(MUXOUT << 5) |
(CR << 4) |
(PC << 2);
*N = (DIVSEL<<23) |
(DIV2<<22) |
(CPGAIN<<21) |
(B_DIV<<8) |
(N_RSV<<7) |
(A_DIV<<2);
return true;
}
bool RAD1Device::tx_setFreq(double freq, double *actual_freq)
{
unsigned R, control, N;
if (!compute_regs(freq, &R, &control, &N, actual_freq)) return false;
if (R==0) return false;
unsigned char result[3];
writeLock.lock();
m_uTx->writeSpi(0,SPI_ENABLE_TX_A,SPI_FMT_MSB | SPI_FMT_HDR_0,
write_it((R & ~0x3) | 1, result),3);
m_uTx->writeSpi(0,SPI_ENABLE_TX_A,SPI_FMT_MSB | SPI_FMT_HDR_0,
write_it((control & ~0x3) | 0, result),3);
usleep(10000);
m_uTx->writeSpi(0,SPI_ENABLE_TX_A,SPI_FMT_MSB | SPI_FMT_HDR_0,
write_it((N & ~0x3) | 2,result),3);
writeLock.unlock();
if (m_uTx->readIO() & PLL_LOCK_DETECT) return true;
if (m_uTx->readIO() & PLL_LOCK_DETECT) return true;
return false;
}
bool RAD1Device::rx_setFreq(double freq, double *actual_freq)
{
unsigned R, control, N;
if (!compute_regs(freq, &R, &control, &N, actual_freq)) return false;
if (R==0) return false;
unsigned char result[3];
writeLock.lock();
m_uRx->writeSpi(0,SPI_ENABLE_RX_A,SPI_FMT_MSB | SPI_FMT_HDR_0,
write_it((R & ~0x3) | 1, result), 3);
m_uRx->writeSpi(0,SPI_ENABLE_RX_A,SPI_FMT_MSB | SPI_FMT_HDR_0,
write_it((control & ~0x3) | 0, result), 3);
usleep(100000);
m_uRx->writeSpi(0,SPI_ENABLE_RX_A,SPI_FMT_MSB | SPI_FMT_HDR_0,
write_it((N & ~0x3) | 2, result), 3);
writeLock.unlock();
usleep(100000);
if (m_uRx->readIO() & PLL_LOCK_DETECT) return true;
if (m_uRx->readIO() & PLL_LOCK_DETECT) return true;
return false;
}
RAD1Device::RAD1Device (double _desiredSampleRate)
{
LOG(INFO) << "creating RAD1 device...";
decimRate = (unsigned int) round(masterClockRate/_desiredSampleRate);
actualSampleRate = masterClockRate/decimRate;
rxGain = 0;
#ifdef SWLOOPBACK
samplePeriod = 1.0e6/actualSampleRate;
loopbackBufferSize = 0;
gettimeofday(&lastReadTime,NULL);
firstRead = false;
#endif
}
bool RAD1Device::make(bool wSkipRx)
{
skipRx = wSkipRx;
writeLock.unlock();
LOG(INFO) << "making RAD1 device..";
#ifndef SWLOOPBACK
string rbf = "fpga.rbf";
//string rbf = "inband_1rxhb_1tx.rbf";
if (!skipRx) {
try {
m_uRx = rnrad1Rx::make(0,decimRate,
rbf,"ezusb.ihx");
m_uRx->setFpgaMasterClockFreq(masterClockRate);
}
catch(...) {
LOG(ERR) << "make failed on Rx";
return false;
}
if (m_uRx->fpgaMasterClockFreq() != masterClockRate)
{
LOG(ERR) << "WRONG FPGA clock freq = " << m_uRx->fpgaMasterClockFreq()
<< ", desired clock freq = " << masterClockRate;
return false;
}
m_uRx->writeOE(0,0xffff);
m_uRx->writeOE((POWER_UP|RX_TXN|ENABLE), 0xffff);
m_uRx->writeIO((POWER_UP|RX_TXN),(POWER_UP|RX_TXN|ENABLE));
}
try {
m_uTx = rnrad1Tx::make(0,decimRate*2,
rbf,"ezusb.ihx");
m_uTx->setFpgaMasterClockFreq(masterClockRate);
}
catch(...) {
LOG(ERR) << "make failed on Tx";
return false;
}
m_uTx->writeOE(0,0xffff);
m_uTx->writeOE((POWER_UP|RX_TXN|ENABLE), 0xffff);
m_uTx->writeIO((POWER_UP|RX_TXN),(POWER_UP|RX_TXN|ENABLE));
if (m_uTx->fpgaMasterClockFreq() != masterClockRate)
{
LOG(ERR) << "WRONG FPGA clock freq = " << m_uTx->fpgaMasterClockFreq()
<< ", desired clock freq = " << masterClockRate;
return false;
}
#endif
samplesRead = 0;
samplesWritten = 0;
started = false;
return true;
}
bool RAD1Device::start()
{
LOG(INFO) << "starting RAD1...";
#ifndef SWLOOPBACK
if (!m_uRx && !skipRx) return false;
if (!m_uTx) return false;
writeLock.lock();
// power up and configure daughterboards
m_uTx->writeOE(0,0xffff);
m_uTx->writeOE((POWER_UP|RX_TXN|ENABLE), 0xffff);
m_uTx->writeIO((POWER_UP|RX_TXN),(POWER_UP|RX_TXN|ENABLE));
//m_uTx->writeIO(0,ENABLE,(RX_TXN | ENABLE));
m_uTx->writeIO((RX_TXN | ENABLE), (RX_TXN | ENABLE));//only for litie
m_uTx->writeFpgaReg(FR_ATR_MASK_0 ,0);//RX_TXN|ENABLE);
m_uTx->writeFpgaReg(FR_ATR_TXVAL_0,0);//,0 |ENABLE);
m_uTx->writeFpgaReg(FR_ATR_RXVAL_0,0);//,RX_TXN|0);
m_uTx->writeFpgaReg(40,0);
m_uTx->writeFpgaReg(42,0);
m_uTx->setPga(0,m_uTx->pgaMax()); // should be 20dB
m_uTx->setPga(1,m_uTx->pgaMax());
m_uTx->setMux(0x00000098);
LOG(INFO) << "TX pgas: " << m_uTx->pga(0) << ", " << m_uTx->pga(1);
writeLock.unlock();
if (!skipRx) {
writeLock.lock();
m_uRx->writeFpgaReg(FR_ATR_MASK_0 + 1*3,0);
m_uRx->writeFpgaReg(FR_ATR_TXVAL_0 + 1*3,0);
m_uRx->writeFpgaReg(FR_ATR_RXVAL_0 + 1*3,0);
m_uRx->writeFpgaReg(41,0);
m_uRx->writeOE((POWER_UP|RX_TXN|ENABLE), 0xffff);
m_uRx->writeIO((POWER_UP|RX_TXN|ENABLE),(POWER_UP|RX_TXN|ENABLE));
//m_uRx->writeIO(1,0,RX2_RX1N); // using Tx/Rx/
m_uRx->writeIO(RX2_RX1N,RX2_RX1N); // using Rx2
m_uRx->setAdcBufferBypass(0,true);
m_uRx->setAdcBufferBypass(1,true);
m_uRx->setPga(0,m_uRx->pgaMax()); // should be 20dB
m_uRx->setPga(1,m_uRx->pgaMax());
m_uRx->setMux(0x00000010);
writeLock.unlock();
// FIXME -- This should be configurable.
setRxGain(47); //maxRxGain());
}
data = new short[currDataSize];
dataStart = 0;
dataEnd = 0;
timeStart = 0;
timeEnd = 0;
timestampOffset = 0;
latestWriteTimestamp = 0;
lastPktTimestamp = 0;
hi32Timestamp = 0;
isAligned = false;
if (!skipRx)
started = (m_uRx->start() && m_uTx->start());
else
started = m_uTx->start();
return started;
#else
gettimeofday(&lastReadTime,NULL);
return true;
#endif
}
bool RAD1Device::stop()
{
#ifndef SWLOOPBACK
if (!m_uRx) return false;
if (!m_uTx) return false;
// power down
m_uTx->writeIO((~POWER_UP|RX_TXN),(POWER_UP|RX_TXN|ENABLE));
m_uRx->writeIO(~POWER_UP,(POWER_UP|ENABLE));
delete[] currData;
started = false;
return !started;
#else
return true;
#endif
}
double RAD1Device::setTxGain(double dB) {
writeLock.lock();
if (dB > maxTxGain()) dB = maxTxGain();
if (dB < minTxGain()) dB = minTxGain();
m_uTx->setPga(0,dB);
m_uTx->setPga(1,dB);
//LOG(NOTICE) << "Setting TX PGA to " << dB << " dB.";
writeLock.unlock();
return dB;
}
double RAD1Device::setRxGain(double dB) {
writeLock.lock();
if (dB > maxRxGain()) dB = maxRxGain();
if (dB < minRxGain()) dB = minRxGain();
double dBret = dB;
dB = dB - minRxGain();
double rfMax = 70.0;
if (dB > rfMax) {
m_uRx->setPga(0,dB-rfMax);
m_uRx->setPga(1,dB-rfMax);
dB = rfMax;
}
else {
m_uRx->setPga(0,0);
m_uRx->setPga(1,0);
}
m_uRx->writeAuxDac(0,
(int) ceil((1.2 + 0.02 - (dB/rfMax))*4096.0/3.3));
LOG(DEBUG) << "Setting DAC voltage to " << (1.2+0.02 - (dB/rfMax)) << " " << (int) ceil((1.2 + 0.02 - (dB/rfMax))*4096.0/3.3);
rxGain = dBret;
writeLock.unlock();
return dBret;
}
// NOTE: Assumes sequential reads
int RAD1Device::readSamples(short *buf, int len, bool *overrun,
TIMESTAMP timestamp,
bool *underrun,
unsigned *RSSI)
{
#ifndef SWLOOPBACK
if (!m_uRx) return 0;
timestamp += timestampOffset;
if (timestamp + len < timeStart) {
memset(buf,0,len*2*sizeof(short));
return len;
}
if (underrun) *underrun = false;
const int bufferSz = 512*24*4;
uint32_t readBuf[bufferSz];
while (1) {
//guestimate USB read size
int readLen=0;
{
int numSamplesNeeded = timestamp + len - timeEnd;
if (numSamplesNeeded <=0) break;
readLen = 512 * ((int) ceil((float) numSamplesNeeded/126.0));
if (readLen > bufferSz) readLen= (bufferSz/512)*512;
}
// read USRP packets, parse and save A/D data as needed
readLen = m_uRx->read((void *)readBuf,readLen,overrun);
for(int pktNum = 0; pktNum < (readLen/512); pktNum++) {
// tmpBuf points to start of a USB packet
uint32_t* tmpBuf = (uint32_t *) (readBuf+pktNum*512/4);
TIMESTAMP pktTimestamp = usrp_to_host_u32(tmpBuf[1]);
uint32_t word0 = usrp_to_host_u32(tmpBuf[0]);
uint32_t chan = (word0 >> 16) & 0x1f;
unsigned payloadSz = word0 & 0x1ff;
LOG(DEBUG) << "first two bytes: " << hex << word0 << " " << dec << pktTimestamp;
bool incrementHi32 = ((lastPktTimestamp & 0x0ffffffffllu) > pktTimestamp);
if (incrementHi32 && (timeStart!=0)) {
LOG(INFO) << "RAD1 high 32 increment!!!";
hi32Timestamp++;
}
pktTimestamp = (((TIMESTAMP) hi32Timestamp) << 32) | pktTimestamp;
if (lastPktTimestamp + payloadSz/2/sizeof(short) != pktTimestamp)
LOG(INFO) << "unexpected timestamp: expected " << lastPktTimestamp + payloadSz/2/sizeof(short) << ", got " << pktTimestamp;
lastPktTimestamp = pktTimestamp;
if (chan == 0x01f) {
// control reply, check to see if its ping reply
uint32_t word2 = usrp_to_host_u32(tmpBuf[2]);
if ((word2 >> 16) == ((0x01 << 8) | 0x02)) {
timestamp -= timestampOffset;
TIMESTAMP newTimestampOffset = pktTimestamp - pingTimestamp + PINGOFFSET;
if ((timestampOffset==0) || fabs((float) newTimestampOffset-(float) timestampOffset)/(float) timestampOffset < 0.1)
timestampOffset = newTimestampOffset;
else { // new offset is more than 10% from old one, then its bogus, so ignore it and keep going
LOG(ERR) << "Ignoring bad update of timestamp offset: " << newTimestampOffset << ", keeping offset at " << timestampOffset;
}
LOG(INFO) << "updating timestamp offset to: " << timestampOffset;
timestamp += timestampOffset;
isAligned = true;
}
continue;
}
if (chan != 0) {
LOG(DEBUG) << "chan: " << chan << ", timestamp: " << pktTimestamp << ", sz:" << payloadSz;
continue;
}
if ((word0 >> 28) & 0x04) {
if (underrun) *underrun = true;
LOG(DEBUG) << "UNDERRUN in TRX->USRP interface";
}
if (RSSI) *RSSI = (word0 >> 21) & 0x3f;
if (!isAligned) continue;
unsigned cursorStart = pktTimestamp - timeStart + dataStart;
while (cursorStart*2 > currDataSize) {
cursorStart -= currDataSize/2;
}
if (cursorStart*2 + payloadSz/2 > currDataSize) {
// need to circle around buffer
memcpy(data+cursorStart*2,tmpBuf+2,(currDataSize-cursorStart*2)*sizeof(short));
memcpy(data,tmpBuf+2+(currDataSize/2-cursorStart),payloadSz-(currDataSize-cursorStart*2)*sizeof(short));
}
else {
memcpy(data+cursorStart*2,tmpBuf+2,payloadSz);
}
if (pktTimestamp + payloadSz/2/sizeof(short) > timeEnd)
timeEnd = pktTimestamp+payloadSz/2/sizeof(short);
//LOG(DEBUG) << "timeStart: " << timeStart << ", timeEnd: " << timeEnd << ", pktTimestamp: " << pktTimestamp;
}
}
// copy desired data to buf
//LOG(INFO) << "len: " << len << ", timeStart: " << timeStart << ", dataStart: " << dataStart << ", timestamp: " << timestamp;
unsigned bufStart = dataStart+(timestamp-timeStart);
if (bufStart + len < currDataSize/2) {
//LOG(INFO) << "bufStart: " << bufStart;
memcpy(buf,data+bufStart*2,len*2*sizeof(short));
memset(data+bufStart*2,0,len*2*sizeof(short));
}
else {
//LOG(INFO) << "len: " << len << ", currDataSize/2: " << currDataSize/2 << ", bufStart: " << bufStart;
unsigned firstLength = (currDataSize/2-bufStart);
//LOG(INFO) << "firstLength: " << firstLength;
memcpy(buf,data+bufStart*2,firstLength*2*sizeof(short));
memset(data+bufStart*2,0,firstLength*2*sizeof(short));
memcpy(buf+firstLength*2,data,(len-firstLength)*2*sizeof(short));
memset(data,0,(len-firstLength)*2*sizeof(short));
}
dataStart = (bufStart + len) % (currDataSize/2);
timeStart = timestamp + len;
// do IQ swap here
for (int i = 0; i < len; i++) {
short tmp = usrp_to_host_short(buf[2*i]);
buf[2*i] = usrp_to_host_short(buf[2*i+1]);
buf[2*i+1] = tmp;
}
return len;
#else
if (loopbackBufferSize < 2) return 0;
int numSamples = 0;
struct timeval currTime;
gettimeofday(&currTime,NULL);
double timeElapsed = (currTime.tv_sec - lastReadTime.tv_sec)*1.0e6 +
(currTime.tv_usec - lastReadTime.tv_usec);
if (timeElapsed < samplePeriod) {return 0;}
int numSamplesToRead = (int) floor(timeElapsed/samplePeriod);
if (numSamplesToRead < len) return 0;
if (numSamplesToRead > len) numSamplesToRead = len;
if (numSamplesToRead > loopbackBufferSize/2) {
firstRead =false;
numSamplesToRead = loopbackBufferSize/2;
}
memcpy(buf,loopbackBuffer,sizeof(short)*2*numSamplesToRead);
loopbackBufferSize -= 2*numSamplesToRead;
memcpy(loopbackBuffer,loopbackBuffer+2*numSamplesToRead,
sizeof(short)*loopbackBufferSize);
numSamples = numSamplesToRead;
if (firstRead) {
int new_usec = lastReadTime.tv_usec + (int) round((double) numSamplesToRead * samplePeriod);
lastReadTime.tv_sec = lastReadTime.tv_sec + new_usec/1000000;
lastReadTime.tv_usec = new_usec % 1000000;
}
else {
gettimeofday(&lastReadTime,NULL);
firstRead = true;
}
samplesRead += numSamples;
return numSamples;
#endif
}
int RAD1Device::writeSamples(short *buf, int len, bool *underrun,
unsigned long long timestamp,
bool isControl)
{
writeLock.lock();
#ifndef SWLOOPBACK
if (!m_uTx) return 0;
static uint32_t outData[128*200];
for (int i = 0; i < len*2; i++) {
buf[i] = host_to_usrp_short(buf[i]);
}
int numWritten = 0;
unsigned isStart = 1;
unsigned RSSI = 0;
unsigned CHAN = (isControl) ? 0x01f : 0x00;
len = len*2*sizeof(short);
int numPkts = (int) ceil((float)len/(float)504);
unsigned isEnd = (numPkts < 2);
uint32_t *outPkt = outData;
int pktNum = 0;
while (numWritten < len) {
// pkt is pointer to start of a USB packet
uint32_t *pkt = outPkt + pktNum*128;
isEnd = (len - numWritten <= 504);
unsigned payloadLen = ((len - numWritten) < 504) ? (len-numWritten) : 504;
pkt[0] = (isStart << 12 | isEnd << 11 | (RSSI & 0x3f) << 5 | CHAN) << 16 | payloadLen;
pkt[1] = timestamp & 0x0ffffffffll;
memcpy(pkt+2,buf+(numWritten/sizeof(short)),payloadLen);
numWritten += payloadLen;
timestamp += payloadLen/2/sizeof(short);
isStart = 0;
pkt[0] = host_to_usrp_u32(pkt[0]);
pkt[1] = host_to_usrp_u32(pkt[1]);
pktNum++;
}
m_uTx->write((const void*) outPkt,sizeof(uint32_t)*128*numPkts,NULL);
samplesWritten += len/2/sizeof(short);
writeLock.unlock();
return len/2/sizeof(short);
#else
int retVal = len;
memcpy(loopbackBuffer+loopbackBufferSize,buf,sizeof(short)*2*len);
samplesWritten += retVal;
loopbackBufferSize += retVal*2;
return retVal;
#endif
}
bool RAD1Device::updateAlignment(TIMESTAMP timestamp)
{
#ifndef SWLOOPBACK
short data[] = {0x00,0x02,0x00,0x00};
uint32_t *wordPtr = (uint32_t *) data;
bool tmpUnderrun;
if (writeSamples((short *) data,1,&tmpUnderrun,timestamp & 0x0ffffffffll,true)) {
pingTimestamp = timestamp;
return true;
}
return false;
#else
return true;
#endif
}
bool RAD1Device::setVCTCXO(unsigned int freq_cal) {
m_uRx->writeAuxDac(2,freq_cal << 4);
}
#ifndef SWLOOPBACK
bool RAD1Device::setTxFreq(double wFreq, double wAdjFreq) {
// Tune to wFreq+LO_OFFSET, to prevent LO bleedthrough from interfering with transmitted signal.
double actFreq;
unsigned int freq_cal;
freq_cal = (unsigned int) round(wAdjFreq); //128+round(wAdjFreq/wFreq*5.4e6);
m_uRx->writeAuxDac(2,freq_cal << 4);
if (!tx_setFreq(wFreq+4*LO_OFFSET,&actFreq)) return false;
bool retVal = m_uTx->setTxFreq(wFreq-actFreq);
LOG(INFO) << "set TX: " << wFreq-actFreq << " actual TX: " << m_uTx->txFreq();
//only for litie,set pow to maxim,switch on 1W amp
//m_uRx->writeAuxDac(1,0);
//m_uRx->writeIO(RX_TXN,RX_TXN);
return retVal;
};
bool RAD1Device::setRxFreq(double wFreq, double wAdjFreq) {
// Tune to wFreq-2*LO_OFFSET, to
// 1) prevent LO bleedthrough (as with the setTxFreq method above)
// 2) The extra LO_OFFSET pushes potential transmitter energy (GSM BS->MS transmissions
// are 45Mhz above MS->BS transmissions) into a notch of the baseband lowpass filter
// in front of the ADC. This possibly gives us an extra 10-20dB Tx/Rx isolation.
double actFreq;
unsigned int freq_cal;
freq_cal = (unsigned int) round(wAdjFreq); //128+round(wAdjFreq/wFreq*5.4e6);
m_uRx->writeAuxDac(2,freq_cal << 4);
if (!rx_setFreq(wFreq-2*LO_OFFSET,&actFreq)) return false;
bool retVal = m_uRx->setRxFreq(wFreq-actFreq);
LOG(INFO) << "set RX: " << wFreq-actFreq << " actual RX: " << m_uRx->rxFreq();
return retVal;
};
#else
bool RAD1Device::setTxFreq(double wFreq) { return true;};
bool RAD1Device::setRxFreq(double wFreq) { return true;};
#endif