deep-tempest/end-to-end/data/dataset_ffdnet.py

194 lines
8.4 KiB
Python
Raw Permalink Normal View History

2023-03-18 16:11:22 -07:00
import random
import numpy as np
import torch
import torch.utils.data as data
import utils.utils_image as util
from utils.DTutils import is_natural_patch
import itertools
2023-03-18 16:11:22 -07:00
class DatasetFFDNet(data.Dataset):
"""
# -----------------------------------------
# Get L/H/M for denosing on AWGN with a range of sigma.
# Only dataroot_H is needed.
# -----------------------------------------
# e.g., FFDNet, H = f(L, sigma), sigma is noise level
# -----------------------------------------
"""
def __init__(self, opt):
super(DatasetFFDNet, self).__init__()
self.opt = opt
self.n_channels = opt['n_channels'] if opt['n_channels'] else 3
2023-03-26 08:18:46 -07:00
self.n_channels_datasetload = opt['n_channels_datasetload'] if opt['n_channels_datasetload'] else 3
2023-03-18 16:11:22 -07:00
self.patch_size = self.opt['H_size'] if opt['H_size'] else 64
self.sigma = opt['sigma'] if opt['sigma'] else [0, 75]
self.sigma_min, self.sigma_max = self.sigma[0], self.sigma[1]
self.sigma_test = opt['sigma_test'] if opt['sigma_test'] else 0
self.use_all_patches = opt['use_all_patches'] if opt['use_all_patches'] else False
self.num_patches_per_image = opt['num_patches_per_image'] if opt['num_patches_per_image'] else 100
# self.num_patches_per_image = opt['num_patches_per_image'] if not(self.use_all_patches) else ((1280**2)//(self.patch_size)**2) ### HARDCODED
self.skip_natural_patches = opt['skip_natural_patches'] if opt['skip_natural_patches'] else False
2023-03-18 16:11:22 -07:00
# -------------------------------------
# get the path of H, return None if input is None
# -------------------------------------
self.paths_H = util.get_image_paths(opt['dataroot_H'])
self.paths_L = util.get_image_paths(opt['dataroot_L'])
# Repeat every image in path list to get more than one patch per image
if self.opt['phase'] == 'train':
listOfLists = [list(itertools.repeat(path, self.num_patches_per_image)) for path in self.paths_H]
self.paths_H = list(itertools.chain.from_iterable(listOfLists))
listOfLists = [list(itertools.repeat(path, self.num_patches_per_image)) for path in self.paths_L]
self.paths_L = list(itertools.chain.from_iterable(listOfLists))
2023-03-18 16:11:22 -07:00
def __getitem__(self, index):
2023-03-18 16:11:22 -07:00
# -------------------------------------
# get H and L image
2023-03-18 16:11:22 -07:00
# -------------------------------------
H_path = self.paths_H[index]
L_path = self.paths_L[index]
H_file, L_file = H_path.split('/')[-1], L_path.split('/')[-1]
H_name, L_name = H_file.split('.')[0], L_file.split('.')[0]
2023-06-26 19:54:22 -07:00
assert H_name==L_name, f'Both high and low quality images MUST have same name.\nGot {H_name} and {L_name} respectively.'
img_H = util.imread_uint(H_path, self.n_channels_datasetload)
2023-03-18 16:11:22 -07:00
img_L = util.imread_uint(L_path, self.n_channels_datasetload)[:,:,:2]
2023-03-18 16:11:22 -07:00
# Temp solution for blanking images
L_v, L_h = img_L.shape[:2]
if L_v==1000 and L_h==1800:
img_L = img_L[(1000-900)//2:-(1000-900)//2,(1800-1600)//2:-(1800-1600)//2,:]
# Get module of complex image, stretch and to uint8
# img_L = img_L.astype('float')
# img_L = np.abs(img_L[:,:,0]+1j*img_L[:,:,1])
# img_L = 255*(img_L - img_L.min())/(img_L.max() - img_L.min())
# img_L = img_L.astype('uint8')
2023-03-18 16:11:22 -07:00
if self.opt['phase'] == 'train':
"""
# --------------------------------
# get L/H/M patch pairs
# --------------------------------
"""
H, W = img_H.shape[:2]
if self.use_all_patches or (img_H.shape[0] <= self.patch_size) or (img_H.shape[1] <= self.patch_size):
# ---------------------------------
# Start or continue image patching
# ---------------------------------
img_patch_index = index % self.num_patches_per_image # Resets to 0 every time index overflows num_patches
2023-04-19 16:45:11 -07:00
# Upper-left corner of patch
h_index = self.patch_size * ( (img_patch_index * self.patch_size) // W)
w_index = self.patch_size * ( ( (img_patch_index * self.patch_size) % W ) // self.patch_size)
# Dont exceed the image limit
h_index = min(h_index, H - self.patch_size)
w_index = min(w_index, W - self.patch_size)
### Keep text patches only (non-natural images)
if self.skip_natural_patches:
# Check if selected patch is natural, based on RGB entropy
is_natural = is_natural_patch(img_H[h_index:h_index + self.patch_size, w_index:w_index + self.patch_size, :])
# If natural, select random patch and keep trying until non-natural or reaching max attempts
attempt = 0
max_attempts = 10
while is_natural and (attempt < max_attempts):
h_index = random.randint(0, max(0, H - self.patch_size))
w_index = random.randint(0, max(0, W - self.patch_size))
is_natural = is_natural_patch(img_H[h_index:h_index + self.patch_size, w_index:w_index + self.patch_size, :])
attempt += 1
else:
# ---------------------------------
# randomly crop the patch
# ---------------------------------
2023-04-19 16:45:11 -07:00
h_index = random.randint(0, max(0, H - self.patch_size))
w_index = random.randint(0, max(0, W - self.patch_size))
# Ground-truth as channels mean
2023-04-19 16:45:11 -07:00
patch_H = np.mean(img_H[h_index:h_index + self.patch_size, w_index:w_index + self.patch_size, :],axis=2)
2023-03-26 08:18:46 -07:00
# Get the patch from the simulation
2023-04-19 16:45:11 -07:00
patch_L = img_L[h_index:h_index + self.patch_size, w_index:w_index + self.patch_size,:]
2023-03-18 16:11:22 -07:00
# ---------------------------------
# HWC to CHW, numpy(uint) to tensor
# ---------------------------------
img_H = util.uint2tensor3(patch_H)
img_L = util.uint2tensor3(patch_L)
2023-03-18 16:11:22 -07:00
# ---------------------------------
# get noise level
# ---------------------------------
noise_level = torch.FloatTensor([int(np.random.uniform(self.sigma_min, self.sigma_max))])/255.0
2023-03-18 16:11:22 -07:00
# noise_level = torch.FloatTensor([np.random.randint(self.sigma_min, self.sigma_max)])/255.0
if (self.sigma_max != 0):
# ---------------------------------
# add noise
# ---------------------------------
noise = torch.randn(img_L.size()).mul_(noise_level).float()
img_L.add_(noise)
2023-03-18 16:11:22 -07:00
else:
"""
# --------------------------------
# get L/H/sigma image pairs
# --------------------------------
"""
# Ground-truth as mean value of RGB channels
img_H = np.mean(img_H,axis=2)
img_H = img_H[:,:,np.newaxis]
# ---------------------------------
# HWC to CHW, numpy(uint) to tensor
# ---------------------------------
img_H = util.uint2tensor3(img_H)
img_L = util.uint2tensor3(img_L)
# img_H = util.uint2single(img_H)
# img_L = util.uint2single(img_L)
2023-03-18 16:11:22 -07:00
2023-03-18 16:11:22 -07:00
# ---------------------------------
# get noise level
2023-03-18 16:11:22 -07:00
# ---------------------------------
noise_level = torch.FloatTensor([int(self.sigma_test)])/255.0
if self.sigma_test != 0:
# noise_level = torch.FloatTensor([np.random.randint(self.sigma_min, self.sigma_max)])/255.0
# ---------------------------------
# add noise
# ---------------------------------
noise = torch.randn(img_L.size()).mul_(noise_level).float()
img_L.add_(noise)
2023-03-18 16:11:22 -07:00
noise_level = noise_level.unsqueeze(1).unsqueeze(1)
return {'L': img_L, 'H': img_H, 'C': noise_level, 'L_path': L_path, 'H_path': H_path}
def __len__(self):
return len(self.paths_H)