import random import numpy as np import torch.utils.data as data import utils.utils_image as util class DatasetSR(data.Dataset): ''' # ----------------------------------------- # Get L/H for SISR. # If only "paths_H" is provided, sythesize bicubicly downsampled L on-the-fly. # ----------------------------------------- # e.g., SRResNet # ----------------------------------------- ''' def __init__(self, opt): super(DatasetSR, self).__init__() self.opt = opt self.n_channels = opt['n_channels'] if opt['n_channels'] else 3 self.sf = opt['scale'] if opt['scale'] else 4 self.patch_size = self.opt['H_size'] if self.opt['H_size'] else 96 self.L_size = self.patch_size // self.sf # ------------------------------------ # get paths of L/H # ------------------------------------ self.paths_H = util.get_image_paths(opt['dataroot_H']) self.paths_L = util.get_image_paths(opt['dataroot_L']) assert self.paths_H, 'Error: H path is empty.' if self.paths_L and self.paths_H: assert len(self.paths_L) == len(self.paths_H), 'L/H mismatch - {}, {}.'.format(len(self.paths_L), len(self.paths_H)) def __getitem__(self, index): L_path = None # ------------------------------------ # get H image # ------------------------------------ H_path = self.paths_H[index] img_H = util.imread_uint(H_path, self.n_channels) img_H = util.uint2single(img_H) # ------------------------------------ # modcrop # ------------------------------------ img_H = util.modcrop(img_H, self.sf) # ------------------------------------ # get L image # ------------------------------------ if self.paths_L: # -------------------------------- # directly load L image # -------------------------------- L_path = self.paths_L[index] img_L = util.imread_uint(L_path, self.n_channels) img_L = util.uint2single(img_L) else: # -------------------------------- # sythesize L image via matlab's bicubic # -------------------------------- H, W = img_H.shape[:2] img_L = util.imresize_np(img_H, 1 / self.sf, True) # ------------------------------------ # if train, get L/H patch pair # ------------------------------------ if self.opt['phase'] == 'train': H, W, C = img_L.shape # -------------------------------- # randomly crop the L patch # -------------------------------- rnd_h = random.randint(0, max(0, H - self.L_size)) rnd_w = random.randint(0, max(0, W - self.L_size)) img_L = img_L[rnd_h:rnd_h + self.L_size, rnd_w:rnd_w + self.L_size, :] # -------------------------------- # crop corresponding H patch # -------------------------------- rnd_h_H, rnd_w_H = int(rnd_h * self.sf), int(rnd_w * self.sf) img_H = img_H[rnd_h_H:rnd_h_H + self.patch_size, rnd_w_H:rnd_w_H + self.patch_size, :] # -------------------------------- # augmentation - flip and/or rotate # -------------------------------- mode = random.randint(0, 7) img_L, img_H = util.augment_img(img_L, mode=mode), util.augment_img(img_H, mode=mode) # ------------------------------------ # L/H pairs, HWC to CHW, numpy to tensor # ------------------------------------ img_H, img_L = util.single2tensor3(img_H), util.single2tensor3(img_L) if L_path is None: L_path = H_path return {'L': img_L, 'H': img_H, 'L_path': L_path, 'H_path': H_path} def __len__(self): return len(self.paths_H)