deep-tempest/end-to-end/utils/utils_modelsummary.py

486 lines
16 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import torch.nn as nn
import torch
import numpy as np
'''
---- 1) FLOPs: floating point operations
---- 2) #Activations: the number of elements of all Conv2d outputs
---- 3) #Conv2d: the number of Conv2d layers
# --------------------------------------------
# Kai Zhang (github: https://github.com/cszn)
# 21/July/2020
# --------------------------------------------
# Reference
https://github.com/sovrasov/flops-counter.pytorch.git
# If you use this code, please consider the following citation:
@inproceedings{zhang2020aim, %
title={AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results},
author={Kai Zhang and Martin Danelljan and Yawei Li and Radu Timofte and others},
booktitle={European Conference on Computer Vision Workshops},
year={2020}
}
# --------------------------------------------
'''
def get_model_flops(model, input_res, print_per_layer_stat=True,
input_constructor=None):
assert type(input_res) is tuple, 'Please provide the size of the input image.'
assert len(input_res) >= 3, 'Input image should have 3 dimensions.'
flops_model = add_flops_counting_methods(model)
flops_model.eval().start_flops_count()
if input_constructor:
input = input_constructor(input_res)
_ = flops_model(**input)
else:
device = list(flops_model.parameters())[-1].device
batch = torch.FloatTensor(1, *input_res).to(device)
_ = flops_model(batch)
if print_per_layer_stat:
print_model_with_flops(flops_model)
flops_count = flops_model.compute_average_flops_cost()
flops_model.stop_flops_count()
return flops_count
def get_model_activation(model, input_res, input_constructor=None):
assert type(input_res) is tuple, 'Please provide the size of the input image.'
assert len(input_res) >= 3, 'Input image should have 3 dimensions.'
activation_model = add_activation_counting_methods(model)
activation_model.eval().start_activation_count()
if input_constructor:
input = input_constructor(input_res)
_ = activation_model(**input)
else:
device = list(activation_model.parameters())[-1].device
batch = torch.FloatTensor(1, *input_res).to(device)
_ = activation_model(batch)
activation_count, num_conv = activation_model.compute_average_activation_cost()
activation_model.stop_activation_count()
return activation_count, num_conv
def get_model_complexity_info(model, input_res, print_per_layer_stat=True, as_strings=True,
input_constructor=None):
assert type(input_res) is tuple
assert len(input_res) >= 3
flops_model = add_flops_counting_methods(model)
flops_model.eval().start_flops_count()
if input_constructor:
input = input_constructor(input_res)
_ = flops_model(**input)
else:
batch = torch.FloatTensor(1, *input_res)
_ = flops_model(batch)
if print_per_layer_stat:
print_model_with_flops(flops_model)
flops_count = flops_model.compute_average_flops_cost()
params_count = get_model_parameters_number(flops_model)
flops_model.stop_flops_count()
if as_strings:
return flops_to_string(flops_count), params_to_string(params_count)
return flops_count, params_count
def flops_to_string(flops, units='GMac', precision=2):
if units is None:
if flops // 10**9 > 0:
return str(round(flops / 10.**9, precision)) + ' GMac'
elif flops // 10**6 > 0:
return str(round(flops / 10.**6, precision)) + ' MMac'
elif flops // 10**3 > 0:
return str(round(flops / 10.**3, precision)) + ' KMac'
else:
return str(flops) + ' Mac'
else:
if units == 'GMac':
return str(round(flops / 10.**9, precision)) + ' ' + units
elif units == 'MMac':
return str(round(flops / 10.**6, precision)) + ' ' + units
elif units == 'KMac':
return str(round(flops / 10.**3, precision)) + ' ' + units
else:
return str(flops) + ' Mac'
def params_to_string(params_num):
if params_num // 10 ** 6 > 0:
return str(round(params_num / 10 ** 6, 2)) + ' M'
elif params_num // 10 ** 3:
return str(round(params_num / 10 ** 3, 2)) + ' k'
else:
return str(params_num)
def print_model_with_flops(model, units='GMac', precision=3):
total_flops = model.compute_average_flops_cost()
def accumulate_flops(self):
if is_supported_instance(self):
return self.__flops__ / model.__batch_counter__
else:
sum = 0
for m in self.children():
sum += m.accumulate_flops()
return sum
def flops_repr(self):
accumulated_flops_cost = self.accumulate_flops()
return ', '.join([flops_to_string(accumulated_flops_cost, units=units, precision=precision),
'{:.3%} MACs'.format(accumulated_flops_cost / total_flops),
self.original_extra_repr()])
def add_extra_repr(m):
m.accumulate_flops = accumulate_flops.__get__(m)
flops_extra_repr = flops_repr.__get__(m)
if m.extra_repr != flops_extra_repr:
m.original_extra_repr = m.extra_repr
m.extra_repr = flops_extra_repr
assert m.extra_repr != m.original_extra_repr
def del_extra_repr(m):
if hasattr(m, 'original_extra_repr'):
m.extra_repr = m.original_extra_repr
del m.original_extra_repr
if hasattr(m, 'accumulate_flops'):
del m.accumulate_flops
model.apply(add_extra_repr)
print(model)
model.apply(del_extra_repr)
def get_model_parameters_number(model):
params_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
return params_num
def add_flops_counting_methods(net_main_module):
# adding additional methods to the existing module object,
# this is done this way so that each function has access to self object
# embed()
net_main_module.start_flops_count = start_flops_count.__get__(net_main_module)
net_main_module.stop_flops_count = stop_flops_count.__get__(net_main_module)
net_main_module.reset_flops_count = reset_flops_count.__get__(net_main_module)
net_main_module.compute_average_flops_cost = compute_average_flops_cost.__get__(net_main_module)
net_main_module.reset_flops_count()
return net_main_module
def compute_average_flops_cost(self):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Returns current mean flops consumption per image.
"""
flops_sum = 0
for module in self.modules():
if is_supported_instance(module):
flops_sum += module.__flops__
return flops_sum
def start_flops_count(self):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Activates the computation of mean flops consumption per image.
Call it before you run the network.
"""
self.apply(add_flops_counter_hook_function)
def stop_flops_count(self):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Stops computing the mean flops consumption per image.
Call whenever you want to pause the computation.
"""
self.apply(remove_flops_counter_hook_function)
def reset_flops_count(self):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Resets statistics computed so far.
"""
self.apply(add_flops_counter_variable_or_reset)
def add_flops_counter_hook_function(module):
if is_supported_instance(module):
if hasattr(module, '__flops_handle__'):
return
if isinstance(module, (nn.Conv2d, nn.Conv3d, nn.ConvTranspose2d)):
handle = module.register_forward_hook(conv_flops_counter_hook)
elif isinstance(module, (nn.ReLU, nn.PReLU, nn.ELU, nn.LeakyReLU, nn.ReLU6)):
handle = module.register_forward_hook(relu_flops_counter_hook)
elif isinstance(module, nn.Linear):
handle = module.register_forward_hook(linear_flops_counter_hook)
elif isinstance(module, (nn.BatchNorm2d)):
handle = module.register_forward_hook(bn_flops_counter_hook)
else:
handle = module.register_forward_hook(empty_flops_counter_hook)
module.__flops_handle__ = handle
def remove_flops_counter_hook_function(module):
if is_supported_instance(module):
if hasattr(module, '__flops_handle__'):
module.__flops_handle__.remove()
del module.__flops_handle__
def add_flops_counter_variable_or_reset(module):
if is_supported_instance(module):
module.__flops__ = 0
# ---- Internal functions
def is_supported_instance(module):
if isinstance(module,
(
nn.Conv2d, nn.ConvTranspose2d,
nn.BatchNorm2d,
nn.Linear,
nn.ReLU, nn.PReLU, nn.ELU, nn.LeakyReLU, nn.ReLU6,
)):
return True
return False
def conv_flops_counter_hook(conv_module, input, output):
# Can have multiple inputs, getting the first one
# input = input[0]
batch_size = output.shape[0]
output_dims = list(output.shape[2:])
kernel_dims = list(conv_module.kernel_size)
in_channels = conv_module.in_channels
out_channels = conv_module.out_channels
groups = conv_module.groups
filters_per_channel = out_channels // groups
conv_per_position_flops = np.prod(kernel_dims) * in_channels * filters_per_channel
active_elements_count = batch_size * np.prod(output_dims)
overall_conv_flops = int(conv_per_position_flops) * int(active_elements_count)
# overall_flops = overall_conv_flops
conv_module.__flops__ += int(overall_conv_flops)
# conv_module.__output_dims__ = output_dims
def relu_flops_counter_hook(module, input, output):
active_elements_count = output.numel()
module.__flops__ += int(active_elements_count)
# print(module.__flops__, id(module))
# print(module)
def linear_flops_counter_hook(module, input, output):
input = input[0]
if len(input.shape) == 1:
batch_size = 1
module.__flops__ += int(batch_size * input.shape[0] * output.shape[0])
else:
batch_size = input.shape[0]
module.__flops__ += int(batch_size * input.shape[1] * output.shape[1])
def bn_flops_counter_hook(module, input, output):
# input = input[0]
# TODO: need to check here
# batch_flops = np.prod(input.shape)
# if module.affine:
# batch_flops *= 2
# module.__flops__ += int(batch_flops)
batch = output.shape[0]
output_dims = output.shape[2:]
channels = module.num_features
batch_flops = batch * channels * np.prod(output_dims)
if module.affine:
batch_flops *= 2
module.__flops__ += int(batch_flops)
# ---- Count the number of convolutional layers and the activation
def add_activation_counting_methods(net_main_module):
# adding additional methods to the existing module object,
# this is done this way so that each function has access to self object
# embed()
net_main_module.start_activation_count = start_activation_count.__get__(net_main_module)
net_main_module.stop_activation_count = stop_activation_count.__get__(net_main_module)
net_main_module.reset_activation_count = reset_activation_count.__get__(net_main_module)
net_main_module.compute_average_activation_cost = compute_average_activation_cost.__get__(net_main_module)
net_main_module.reset_activation_count()
return net_main_module
def compute_average_activation_cost(self):
"""
A method that will be available after add_activation_counting_methods() is called
on a desired net object.
Returns current mean activation consumption per image.
"""
activation_sum = 0
num_conv = 0
for module in self.modules():
if is_supported_instance_for_activation(module):
activation_sum += module.__activation__
num_conv += module.__num_conv__
return activation_sum, num_conv
def start_activation_count(self):
"""
A method that will be available after add_activation_counting_methods() is called
on a desired net object.
Activates the computation of mean activation consumption per image.
Call it before you run the network.
"""
self.apply(add_activation_counter_hook_function)
def stop_activation_count(self):
"""
A method that will be available after add_activation_counting_methods() is called
on a desired net object.
Stops computing the mean activation consumption per image.
Call whenever you want to pause the computation.
"""
self.apply(remove_activation_counter_hook_function)
def reset_activation_count(self):
"""
A method that will be available after add_activation_counting_methods() is called
on a desired net object.
Resets statistics computed so far.
"""
self.apply(add_activation_counter_variable_or_reset)
def add_activation_counter_hook_function(module):
if is_supported_instance_for_activation(module):
if hasattr(module, '__activation_handle__'):
return
if isinstance(module, (nn.Conv2d, nn.ConvTranspose2d)):
handle = module.register_forward_hook(conv_activation_counter_hook)
module.__activation_handle__ = handle
def remove_activation_counter_hook_function(module):
if is_supported_instance_for_activation(module):
if hasattr(module, '__activation_handle__'):
module.__activation_handle__.remove()
del module.__activation_handle__
def add_activation_counter_variable_or_reset(module):
if is_supported_instance_for_activation(module):
module.__activation__ = 0
module.__num_conv__ = 0
def is_supported_instance_for_activation(module):
if isinstance(module,
(
nn.Conv2d, nn.ConvTranspose2d,
)):
return True
return False
def conv_activation_counter_hook(module, input, output):
"""
Calculate the activations in the convolutional operation.
Reference: Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár, Designing Network Design Spaces.
:param module:
:param input:
:param output:
:return:
"""
module.__activation__ += output.numel()
module.__num_conv__ += 1
def empty_flops_counter_hook(module, input, output):
module.__flops__ += 0
def upsample_flops_counter_hook(module, input, output):
output_size = output[0]
batch_size = output_size.shape[0]
output_elements_count = batch_size
for val in output_size.shape[1:]:
output_elements_count *= val
module.__flops__ += int(output_elements_count)
def pool_flops_counter_hook(module, input, output):
input = input[0]
module.__flops__ += int(np.prod(input.shape))
def dconv_flops_counter_hook(dconv_module, input, output):
input = input[0]
batch_size = input.shape[0]
output_dims = list(output.shape[2:])
m_channels, in_channels, kernel_dim1, _, = dconv_module.weight.shape
out_channels, _, kernel_dim2, _, = dconv_module.projection.shape
# groups = dconv_module.groups
# filters_per_channel = out_channels // groups
conv_per_position_flops1 = kernel_dim1 ** 2 * in_channels * m_channels
conv_per_position_flops2 = kernel_dim2 ** 2 * out_channels * m_channels
active_elements_count = batch_size * np.prod(output_dims)
overall_conv_flops = (conv_per_position_flops1 + conv_per_position_flops2) * active_elements_count
overall_flops = overall_conv_flops
dconv_module.__flops__ += int(overall_flops)
# dconv_module.__output_dims__ = output_dims