deep-tempest/KAIR/data/dataset_plain.py

86 lines
3.3 KiB
Python

import random
import numpy as np
import torch.utils.data as data
import utils.utils_image as util
class DatasetPlain(data.Dataset):
'''
# -----------------------------------------
# Get L/H for image-to-image mapping.
# Both "paths_L" and "paths_H" are needed.
# -----------------------------------------
# e.g., train denoiser with L and H
# -----------------------------------------
'''
def __init__(self, opt):
super(DatasetPlain, self).__init__()
print('Get L/H for image-to-image mapping. Both "paths_L" and "paths_H" are needed.')
self.opt = opt
self.n_channels = opt['n_channels'] if opt['n_channels'] else 3
self.patch_size = self.opt['H_size'] if self.opt['H_size'] else 64
# ------------------------------------
# get the path of L/H
# ------------------------------------
self.paths_H = util.get_image_paths(opt['dataroot_H'])
self.paths_L = util.get_image_paths(opt['dataroot_L'])
assert self.paths_H, 'Error: H path is empty.'
assert self.paths_L, 'Error: L path is empty. Plain dataset assumes both L and H are given!'
if self.paths_L and self.paths_H:
assert len(self.paths_L) == len(self.paths_H), 'L/H mismatch - {}, {}.'.format(len(self.paths_L), len(self.paths_H))
def __getitem__(self, index):
# ------------------------------------
# get H image
# ------------------------------------
H_path = self.paths_H[index]
img_H = util.imread_uint(H_path, self.n_channels)
# ------------------------------------
# get L image
# ------------------------------------
L_path = self.paths_L[index]
img_L = util.imread_uint(L_path, self.n_channels)
# ------------------------------------
# if train, get L/H patch pair
# ------------------------------------
if self.opt['phase'] == 'train':
H, W, _ = img_H.shape
# --------------------------------
# randomly crop the patch
# --------------------------------
rnd_h = random.randint(0, max(0, H - self.patch_size))
rnd_w = random.randint(0, max(0, W - self.patch_size))
patch_L = img_L[rnd_h:rnd_h + self.patch_size, rnd_w:rnd_w + self.patch_size, :]
patch_H = img_H[rnd_h:rnd_h + self.patch_size, rnd_w:rnd_w + self.patch_size, :]
# --------------------------------
# augmentation - flip and/or rotate
# --------------------------------
mode = random.randint(0, 7)
patch_L, patch_H = util.augment_img(patch_L, mode=mode), util.augment_img(patch_H, mode=mode)
# --------------------------------
# HWC to CHW, numpy(uint) to tensor
# --------------------------------
img_L, img_H = util.uint2tensor3(patch_L), util.uint2tensor3(patch_H)
else:
# --------------------------------
# HWC to CHW, numpy(uint) to tensor
# --------------------------------
img_L, img_H = util.uint2tensor3(img_L), util.uint2tensor3(img_H)
return {'L': img_L, 'H': img_H, 'L_path': L_path, 'H_path': H_path}
def __len__(self):
return len(self.paths_H)