deep-tempest/KAIR/utils/utils_video.py

494 lines
18 KiB
Python

import os
import cv2
import numpy as np
import torch
import random
from os import path as osp
from torch.nn import functional as F
from abc import ABCMeta, abstractmethod
def scandir(dir_path, suffix=None, recursive=False, full_path=False):
"""Scan a directory to find the interested files.
Args:
dir_path (str): Path of the directory.
suffix (str | tuple(str), optional): File suffix that we are
interested in. Default: None.
recursive (bool, optional): If set to True, recursively scan the
directory. Default: False.
full_path (bool, optional): If set to True, include the dir_path.
Default: False.
Returns:
A generator for all the interested files with relative paths.
"""
if (suffix is not None) and not isinstance(suffix, (str, tuple)):
raise TypeError('"suffix" must be a string or tuple of strings')
root = dir_path
def _scandir(dir_path, suffix, recursive):
for entry in os.scandir(dir_path):
if not entry.name.startswith('.') and entry.is_file():
if full_path:
return_path = entry.path
else:
return_path = osp.relpath(entry.path, root)
if suffix is None:
yield return_path
elif return_path.endswith(suffix):
yield return_path
else:
if recursive:
yield from _scandir(entry.path, suffix=suffix, recursive=recursive)
else:
continue
return _scandir(dir_path, suffix=suffix, recursive=recursive)
def read_img_seq(path, require_mod_crop=False, scale=1, return_imgname=False):
"""Read a sequence of images from a given folder path.
Args:
path (list[str] | str): List of image paths or image folder path.
require_mod_crop (bool): Require mod crop for each image.
Default: False.
scale (int): Scale factor for mod_crop. Default: 1.
return_imgname(bool): Whether return image names. Default False.
Returns:
Tensor: size (t, c, h, w), RGB, [0, 1].
list[str]: Returned image name list.
"""
if isinstance(path, list):
img_paths = path
else:
img_paths = sorted(list(scandir(path, full_path=True)))
imgs = [cv2.imread(v).astype(np.float32) / 255. for v in img_paths]
if require_mod_crop:
imgs = [mod_crop(img, scale) for img in imgs]
imgs = img2tensor(imgs, bgr2rgb=True, float32=True)
imgs = torch.stack(imgs, dim=0)
if return_imgname:
imgnames = [osp.splitext(osp.basename(path))[0] for path in img_paths]
return imgs, imgnames
else:
return imgs
def img2tensor(imgs, bgr2rgb=True, float32=True):
"""Numpy array to tensor.
Args:
imgs (list[ndarray] | ndarray): Input images.
bgr2rgb (bool): Whether to change bgr to rgb.
float32 (bool): Whether to change to float32.
Returns:
list[tensor] | tensor: Tensor images. If returned results only have
one element, just return tensor.
"""
def _totensor(img, bgr2rgb, float32):
if img.shape[2] == 3 and bgr2rgb:
if img.dtype == 'float64':
img = img.astype('float32')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img.transpose(2, 0, 1))
if float32:
img = img.float()
return img
if isinstance(imgs, list):
return [_totensor(img, bgr2rgb, float32) for img in imgs]
else:
return _totensor(imgs, bgr2rgb, float32)
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
"""Convert torch Tensors into image numpy arrays.
After clamping to [min, max], values will be normalized to [0, 1].
Args:
tensor (Tensor or list[Tensor]): Accept shapes:
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
2) 3D Tensor of shape (3/1 x H x W);
3) 2D Tensor of shape (H x W).
Tensor channel should be in RGB order.
rgb2bgr (bool): Whether to change rgb to bgr.
out_type (numpy type): output types. If ``np.uint8``, transform outputs
to uint8 type with range [0, 255]; otherwise, float type with
range [0, 1]. Default: ``np.uint8``.
min_max (tuple[int]): min and max values for clamp.
Returns:
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
shape (H x W). The channel order is BGR.
"""
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
if torch.is_tensor(tensor):
tensor = [tensor]
result = []
for _tensor in tensor:
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
n_dim = _tensor.dim()
if n_dim == 4:
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
img_np = img_np.transpose(1, 2, 0)
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 3:
img_np = _tensor.numpy()
img_np = img_np.transpose(1, 2, 0)
if img_np.shape[2] == 1: # gray image
img_np = np.squeeze(img_np, axis=2)
else:
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 2:
img_np = _tensor.numpy()
else:
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
if out_type == np.uint8:
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
img_np = (img_np * 255.0).round()
img_np = img_np.astype(out_type)
result.append(img_np)
if len(result) == 1:
result = result[0]
return result
def augment(imgs, hflip=True, rotation=True, flows=None, return_status=False):
"""Augment: horizontal flips OR rotate (0, 90, 180, 270 degrees).
We use vertical flip and transpose for rotation implementation.
All the images in the list use the same augmentation.
Args:
imgs (list[ndarray] | ndarray): Images to be augmented. If the input
is an ndarray, it will be transformed to a list.
hflip (bool): Horizontal flip. Default: True.
rotation (bool): Ratotation. Default: True.
flows (list[ndarray]: Flows to be augmented. If the input is an
ndarray, it will be transformed to a list.
Dimension is (h, w, 2). Default: None.
return_status (bool): Return the status of flip and rotation.
Default: False.
Returns:
list[ndarray] | ndarray: Augmented images and flows. If returned
results only have one element, just return ndarray.
"""
hflip = hflip and random.random() < 0.5
vflip = rotation and random.random() < 0.5
rot90 = rotation and random.random() < 0.5
def _augment(img):
if hflip: # horizontal
cv2.flip(img, 1, img)
if vflip: # vertical
cv2.flip(img, 0, img)
if rot90:
img = img.transpose(1, 0, 2)
return img
def _augment_flow(flow):
if hflip: # horizontal
cv2.flip(flow, 1, flow)
flow[:, :, 0] *= -1
if vflip: # vertical
cv2.flip(flow, 0, flow)
flow[:, :, 1] *= -1
if rot90:
flow = flow.transpose(1, 0, 2)
flow = flow[:, :, [1, 0]]
return flow
if not isinstance(imgs, list):
imgs = [imgs]
imgs = [_augment(img) for img in imgs]
if len(imgs) == 1:
imgs = imgs[0]
if flows is not None:
if not isinstance(flows, list):
flows = [flows]
flows = [_augment_flow(flow) for flow in flows]
if len(flows) == 1:
flows = flows[0]
return imgs, flows
else:
if return_status:
return imgs, (hflip, vflip, rot90)
else:
return imgs
def paired_random_crop(img_gts, img_lqs, gt_patch_size, scale, gt_path=None):
"""Paired random crop. Support Numpy array and Tensor inputs.
It crops lists of lq and gt images with corresponding locations.
Args:
img_gts (list[ndarray] | ndarray | list[Tensor] | Tensor): GT images. Note that all images
should have the same shape. If the input is an ndarray, it will
be transformed to a list containing itself.
img_lqs (list[ndarray] | ndarray): LQ images. Note that all images
should have the same shape. If the input is an ndarray, it will
be transformed to a list containing itself.
gt_patch_size (int): GT patch size.
scale (int): Scale factor.
gt_path (str): Path to ground-truth. Default: None.
Returns:
list[ndarray] | ndarray: GT images and LQ images. If returned results
only have one element, just return ndarray.
"""
if not isinstance(img_gts, list):
img_gts = [img_gts]
if not isinstance(img_lqs, list):
img_lqs = [img_lqs]
# determine input type: Numpy array or Tensor
input_type = 'Tensor' if torch.is_tensor(img_gts[0]) else 'Numpy'
if input_type == 'Tensor':
h_lq, w_lq = img_lqs[0].size()[-2:]
h_gt, w_gt = img_gts[0].size()[-2:]
else:
h_lq, w_lq = img_lqs[0].shape[0:2]
h_gt, w_gt = img_gts[0].shape[0:2]
lq_patch_size = gt_patch_size // scale
if h_gt != h_lq * scale or w_gt != w_lq * scale:
raise ValueError(f'Scale mismatches. GT ({h_gt}, {w_gt}) is not {scale}x ',
f'multiplication of LQ ({h_lq}, {w_lq}).')
if h_lq < lq_patch_size or w_lq < lq_patch_size:
raise ValueError(f'LQ ({h_lq}, {w_lq}) is smaller than patch size '
f'({lq_patch_size}, {lq_patch_size}). '
f'Please remove {gt_path}.')
# randomly choose top and left coordinates for lq patch
top = random.randint(0, h_lq - lq_patch_size)
left = random.randint(0, w_lq - lq_patch_size)
# crop lq patch
if input_type == 'Tensor':
img_lqs = [v[:, :, top:top + lq_patch_size, left:left + lq_patch_size] for v in img_lqs]
else:
img_lqs = [v[top:top + lq_patch_size, left:left + lq_patch_size, ...] for v in img_lqs]
# crop corresponding gt patch
top_gt, left_gt = int(top * scale), int(left * scale)
if input_type == 'Tensor':
img_gts = [v[:, :, top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size] for v in img_gts]
else:
img_gts = [v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...] for v in img_gts]
if len(img_gts) == 1:
img_gts = img_gts[0]
if len(img_lqs) == 1:
img_lqs = img_lqs[0]
return img_gts, img_lqs
# Modified from https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py # noqa: E501
class BaseStorageBackend(metaclass=ABCMeta):
"""Abstract class of storage backends.
All backends need to implement two apis: ``get()`` and ``get_text()``.
``get()`` reads the file as a byte stream and ``get_text()`` reads the file
as texts.
"""
@abstractmethod
def get(self, filepath):
pass
@abstractmethod
def get_text(self, filepath):
pass
class MemcachedBackend(BaseStorageBackend):
"""Memcached storage backend.
Attributes:
server_list_cfg (str): Config file for memcached server list.
client_cfg (str): Config file for memcached client.
sys_path (str | None): Additional path to be appended to `sys.path`.
Default: None.
"""
def __init__(self, server_list_cfg, client_cfg, sys_path=None):
if sys_path is not None:
import sys
sys.path.append(sys_path)
try:
import mc
except ImportError:
raise ImportError('Please install memcached to enable MemcachedBackend.')
self.server_list_cfg = server_list_cfg
self.client_cfg = client_cfg
self._client = mc.MemcachedClient.GetInstance(self.server_list_cfg, self.client_cfg)
# mc.pyvector servers as a point which points to a memory cache
self._mc_buffer = mc.pyvector()
def get(self, filepath):
filepath = str(filepath)
import mc
self._client.Get(filepath, self._mc_buffer)
value_buf = mc.ConvertBuffer(self._mc_buffer)
return value_buf
def get_text(self, filepath):
raise NotImplementedError
class HardDiskBackend(BaseStorageBackend):
"""Raw hard disks storage backend."""
def get(self, filepath):
filepath = str(filepath)
with open(filepath, 'rb') as f:
value_buf = f.read()
return value_buf
def get_text(self, filepath):
filepath = str(filepath)
with open(filepath, 'r') as f:
value_buf = f.read()
return value_buf
class LmdbBackend(BaseStorageBackend):
"""Lmdb storage backend.
Args:
db_paths (str | list[str]): Lmdb database paths.
client_keys (str | list[str]): Lmdb client keys. Default: 'default'.
readonly (bool, optional): Lmdb environment parameter. If True,
disallow any write operations. Default: True.
lock (bool, optional): Lmdb environment parameter. If False, when
concurrent access occurs, do not lock the database. Default: False.
readahead (bool, optional): Lmdb environment parameter. If False,
disable the OS filesystem readahead mechanism, which may improve
random read performance when a database is larger than RAM.
Default: False.
Attributes:
db_paths (list): Lmdb database path.
_client (list): A list of several lmdb envs.
"""
def __init__(self, db_paths, client_keys='default', readonly=True, lock=False, readahead=False, **kwargs):
try:
import lmdb
except ImportError:
raise ImportError('Please install lmdb to enable LmdbBackend.')
if isinstance(client_keys, str):
client_keys = [client_keys]
if isinstance(db_paths, list):
self.db_paths = [str(v) for v in db_paths]
elif isinstance(db_paths, str):
self.db_paths = [str(db_paths)]
assert len(client_keys) == len(self.db_paths), ('client_keys and db_paths should have the same length, '
f'but received {len(client_keys)} and {len(self.db_paths)}.')
self._client = {}
for client, path in zip(client_keys, self.db_paths):
self._client[client] = lmdb.open(path, readonly=readonly, lock=lock, readahead=readahead, **kwargs)
def get(self, filepath, client_key):
"""Get values according to the filepath from one lmdb named client_key.
Args:
filepath (str | obj:`Path`): Here, filepath is the lmdb key.
client_key (str): Used for distinguishing different lmdb envs.
"""
filepath = str(filepath)
assert client_key in self._client, (f'client_key {client_key} is not ' 'in lmdb clients.')
client = self._client[client_key]
with client.begin(write=False) as txn:
value_buf = txn.get(filepath.encode('ascii'))
return value_buf
def get_text(self, filepath):
raise NotImplementedError
class FileClient(object):
"""A general file client to access files in different backend.
The client loads a file or text in a specified backend from its path
and return it as a binary file. it can also register other backend
accessor with a given name and backend class.
Attributes:
backend (str): The storage backend type. Options are "disk",
"memcached" and "lmdb".
client (:obj:`BaseStorageBackend`): The backend object.
"""
_backends = {
'disk': HardDiskBackend,
'memcached': MemcachedBackend,
'lmdb': LmdbBackend,
}
def __init__(self, backend='disk', **kwargs):
if backend not in self._backends:
raise ValueError(f'Backend {backend} is not supported. Currently supported ones'
f' are {list(self._backends.keys())}')
self.backend = backend
self.client = self._backends[backend](**kwargs)
def get(self, filepath, client_key='default'):
# client_key is used only for lmdb, where different fileclients have
# different lmdb environments.
if self.backend == 'lmdb':
return self.client.get(filepath, client_key)
else:
return self.client.get(filepath)
def get_text(self, filepath):
return self.client.get_text(filepath)
def imfrombytes(content, flag='color', float32=False):
"""Read an image from bytes.
Args:
content (bytes): Image bytes got from files or other streams.
flag (str): Flags specifying the color type of a loaded image,
candidates are `color`, `grayscale` and `unchanged`.
float32 (bool): Whether to change to float32., If True, will also norm
to [0, 1]. Default: False.
Returns:
ndarray: Loaded image array.
"""
img_np = np.frombuffer(content, np.uint8)
imread_flags = {'color': cv2.IMREAD_COLOR, 'grayscale': cv2.IMREAD_GRAYSCALE, 'unchanged': cv2.IMREAD_UNCHANGED}
img = cv2.imdecode(img_np, imread_flags[flag])
if float32:
img = img.astype(np.float32) / 255.
return img