srsLTE/srsenb/test/mac/scheduler_test_utils.h

263 lines
8.3 KiB
C
Raw Normal View History

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#ifndef SRSLTE_SCHEDULER_TEST_UTILS_H
#define SRSLTE_SCHEDULER_TEST_UTILS_H
#include "srsenb/hdr/stack/mac/scheduler.h"
#include "srslte/common/test_common.h"
#include "srslte/interfaces/sched_interface.h"
#include <algorithm>
#include <chrono>
#include <random>
/***************************
* Setup Random generators
**************************/
// uint32_t const seed = std::chrono::system_clock::now().time_since_epoch().count();
uint32_t const seed = 2452071795;
// uint32_t const seed = 1581009287; // prb==25
std::default_random_engine rand_gen(seed);
std::uniform_real_distribution<float> unif_dist(0, 1.0);
bool check_old_pids = false;
float randf()
{
return unif_dist(rand_gen);
}
template <typename Integer>
Integer rand_int(Integer lb, Integer ub)
{
std::uniform_int_distribution<Integer> dist(lb, ub);
return dist(rand_gen);
}
/*****************************
* Setup Sched Configuration
****************************/
srsenb::sched_interface::cell_cfg_t generate_default_cell_cfg(uint32_t nof_prb)
{
srsenb::sched_interface::cell_cfg_t cell_cfg = {};
srslte_cell_t& cell_cfg_phy = cell_cfg.cell;
/* Set PHY cell configuration */
cell_cfg_phy.id = 1;
cell_cfg_phy.cp = SRSLTE_CP_NORM;
cell_cfg_phy.nof_ports = 1;
cell_cfg_phy.nof_prb = nof_prb;
cell_cfg_phy.phich_length = SRSLTE_PHICH_NORM;
cell_cfg_phy.phich_resources = SRSLTE_PHICH_R_1;
cell_cfg.sibs[0].len = 18;
cell_cfg.sibs[0].period_rf = 8;
cell_cfg.sibs[1].len = 41;
cell_cfg.sibs[1].period_rf = 16;
cell_cfg.si_window_ms = 40;
cell_cfg.nrb_pucch = 2;
cell_cfg.prach_freq_offset = (cell_cfg_phy.nof_prb == 6) ? 0 : 2;
cell_cfg.prach_rar_window = 3;
cell_cfg.maxharq_msg3tx = 3;
return cell_cfg;
}
srsenb::sched_interface::ue_cfg_t generate_default_ue_cfg()
{
srsenb::sched_interface::ue_cfg_t ue_cfg = {};
ue_cfg.aperiodic_cqi_period = 40;
ue_cfg.maxharq_tx = 5;
ue_cfg.dl_cfg.tm = SRSLTE_TM1;
ue_cfg.supported_cc_list.resize(1);
ue_cfg.supported_cc_list[0].enb_cc_idx = 0;
ue_cfg.supported_cc_list[0].active = true;
ue_cfg.ue_bearers[0].direction = srsenb::sched_interface::ue_bearer_cfg_t::BOTH;
return ue_cfg;
}
/*****************************
* Event Setup Helpers
****************************/
// Struct that represents all the events that take place in a TTI
struct tti_ev {
struct user_buffer_ev {
uint32_t sr_data = 0; ///< update BSR
uint32_t dl_data = 0; ///< update DL buffer newtx
uint32_t dl_nof_retxs = 0; ///< update DL buffer retx
};
struct user_cfg_ev {
uint16_t rnti;
std::unique_ptr<srsenb::sched_interface::ue_cfg_t> ue_cfg; ///< optional ue_cfg call
std::unique_ptr<srsenb::sched_interface::ue_bearer_cfg_t> bearer_cfg; ///< optional bearer_cfg call
std::unique_ptr<user_buffer_ev> buffer_ev; ///< update of a user dl/ul buffer
bool rem_user = false; ///< whether to remove a ue
};
std::vector<user_cfg_ev> user_updates;
};
struct sim_sched_args {
uint32_t nof_ttis;
float P_retx;
srsenb::sched_interface::ue_cfg_t ue_cfg;
srsenb::sched_interface::ue_bearer_cfg_t bearer_cfg;
std::vector<srsenb::sched_interface::cell_cfg_t> cell_cfg;
};
// generate all events up front
struct sched_sim_events {
sim_sched_args sim_args; ///< arguments used to generate TTI events
std::vector<tti_ev> tti_events;
};
struct sched_sim_event_generator {
uint16_t next_rnti = 70;
uint32_t current_tti = 0;
struct user_data {
uint16_t rnti;
uint32_t tti_start;
uint32_t tti_duration;
};
std::vector<user_data> current_users;
// generated events
std::vector<tti_ev> tti_events;
void step_tti(uint32_t nof_ttis = 1)
{
current_tti += nof_ttis;
if (current_tti >= tti_events.size()) {
tti_events.resize(current_tti + 1);
}
rem_old_users();
}
void step_until(uint32_t tti)
{
if (current_tti >= tti) {
// error
return;
}
current_tti = tti;
if (current_tti >= tti_events.size()) {
tti_events.resize(current_tti + 1);
}
rem_old_users();
}
tti_ev::user_cfg_ev* add_new_default_user(uint32_t duration)
{
std::vector<tti_ev::user_cfg_ev>& user_updates = tti_events[current_tti].user_updates;
user_updates.emplace_back();
auto& user = user_updates.back();
user.rnti = next_rnti++;
// creates a user with one supported CC (PRACH stage)
user.ue_cfg.reset(new srsenb::sched_interface::ue_cfg_t{generate_default_ue_cfg()});
current_users.emplace_back();
current_users.back().rnti = user.rnti;
current_users.back().tti_start = current_tti;
current_users.back().tti_duration = duration;
return &user;
}
int add_dl_data(uint16_t rnti, uint32_t new_data)
{
TESTASSERT(user_exists(rnti));
tti_ev::user_cfg_ev* user = get_user_cfg(rnti);
user->buffer_ev.reset(new tti_ev::user_buffer_ev{});
user->buffer_ev->dl_data = new_data;
return SRSLTE_SUCCESS;
}
int add_ul_data(uint16_t rnti, uint32_t new_data)
{
TESTASSERT(user_exists(rnti));
tti_ev::user_cfg_ev* user = get_user_cfg(rnti);
TESTASSERT(user != nullptr);
user->buffer_ev.reset(new tti_ev::user_buffer_ev{});
user->buffer_ev->sr_data = new_data;
return SRSLTE_SUCCESS;
}
tti_ev::user_cfg_ev* user_reconf(uint16_t rnti)
{
if (not user_exists(rnti)) {
return nullptr;
}
tti_ev::user_cfg_ev* user = get_user_cfg(rnti);
user->ue_cfg.reset(new srsenb::sched_interface::ue_cfg_t{generate_default_ue_cfg()});
// it should by now have a DRB1. Add other DRBs manually
user->ue_cfg->ue_bearers[2].direction = srsenb::sched_interface::ue_bearer_cfg_t::BOTH;
return user;
}
private:
tti_ev::user_cfg_ev* get_user_cfg(uint16_t rnti)
{
std::vector<tti_ev::user_cfg_ev>& user_updates = tti_events[current_tti].user_updates;
auto it = std::find_if(
user_updates.begin(), user_updates.end(), [&rnti](tti_ev::user_cfg_ev& user) { return user.rnti == rnti; });
if (it == user_updates.end()) {
user_updates.emplace_back();
user_updates.back().rnti = rnti;
return &user_updates.back();
}
return &(*it);
}
bool user_exists(uint16_t rnti)
{
return std::find_if(current_users.begin(), current_users.end(), [&rnti](const user_data& u) {
return u.rnti == rnti;
}) != current_users.end();
}
void rem_old_users()
{
// remove users that pass their connection duration
auto rem_it = std::remove_if(current_users.begin(), current_users.end(), [this](const user_data& u) {
return u.tti_start + u.tti_duration < current_tti;
});
// set the call rem_user(...) at the right tti
for (auto it = rem_it; it != current_users.end(); ++it) {
uint32_t rem_tti = it->tti_start + it->tti_duration;
auto& l = tti_events[rem_tti].user_updates;
auto user_it = std::find_if(l.begin(), l.end(), [&it](tti_ev::user_cfg_ev& u) { return it->rnti == u.rnti; });
if (user_it == l.end()) {
l.emplace_back();
l.back().rem_user = true;
} else {
user_it->rem_user = true;
}
}
current_users.erase(rem_it, current_users.end());
}
};
#endif // SRSLTE_SCHEDULER_TEST_UTILS_H