srsLTE/lib/include/srslte/adt/mem_pool.h

220 lines
5.5 KiB
C
Raw Normal View History

/**
*
* \section COPYRIGHT
*
* Copyright 2013-2020 Software Radio Systems Limited
*
* By using this file, you agree to the terms and conditions set
* forth in the LICENSE file which can be found at the top level of
* the distribution.
*
*/
#ifndef SRSLTE_MEM_POOL_H
#define SRSLTE_MEM_POOL_H
#include <cstdint>
#include <memory>
#include <mutex>
namespace srslte {
/// Stores provided mem blocks in a stack in an non-owning manner. Not thread-safe
class memblock_stack
{
struct node {
node* prev;
explicit node(node* prev_) : prev(prev_) {}
};
public:
constexpr static size_t min_memblock_size() { return sizeof(node); }
memblock_stack() = default;
memblock_stack(const memblock_stack&) = delete;
memblock_stack(memblock_stack&& other) noexcept : head(other.head) { other.head = nullptr; }
memblock_stack& operator=(const memblock_stack&) = delete;
memblock_stack& operator=(memblock_stack&& other) noexcept
{
head = other.head;
other.head = nullptr;
return *this;
}
void push(uint8_t* block) noexcept
{
// printf("head: %ld\n", (long)head);
node* next = ::new (block) node(head);
head = next;
count++;
}
uint8_t* try_pop() noexcept
{
if (is_empty()) {
return nullptr;
}
node* last_head = head;
head = head->prev;
count--;
return (uint8_t*)last_head;
}
bool is_empty() const { return head == nullptr; }
size_t size() const { return count; }
void clear() { head = nullptr; }
private:
node* head = nullptr;
size_t count = 0;
};
/// memblock stack that mutexes pushing/popping
class mutexed_memblock_stack
{
public:
mutexed_memblock_stack() = default;
mutexed_memblock_stack(const mutexed_memblock_stack&) = delete;
mutexed_memblock_stack(mutexed_memblock_stack&& other) noexcept
{
std::unique_lock<std::mutex> lk1(other.mutex, std::defer_lock);
std::unique_lock<std::mutex> lk2(mutex, std::defer_lock);
std::lock(lk1, lk2);
stack = std::move(other.stack);
}
mutexed_memblock_stack& operator=(const mutexed_memblock_stack&) = delete;
mutexed_memblock_stack& operator=(mutexed_memblock_stack&& other) noexcept
{
std::unique_lock<std::mutex> lk1(other.mutex, std::defer_lock);
std::unique_lock<std::mutex> lk2(mutex, std::defer_lock);
std::lock(lk1, lk2);
stack = std::move(other.stack);
return *this;
}
void push(uint8_t* block) noexcept
{
std::lock_guard<std::mutex> lock(mutex);
stack.push(block);
}
uint8_t* try_pop() noexcept
{
std::lock_guard<std::mutex> lock(mutex);
uint8_t* block = stack.try_pop();
return block;
}
bool is_empty() const noexcept { return stack.is_empty(); }
size_t size() const noexcept
{
std::lock_guard<std::mutex> lock(mutex);
return stack.size();
}
void clear()
{
std::lock_guard<std::mutex> lock(mutex);
stack.clear();
}
private:
memblock_stack stack;
mutable std::mutex mutex;
};
/**
* Pool specialized for big objects. Created objects are of same time, and are not contiguous in memory.
* Memory management of created objects is automatically handled. Relevant methods:
* - ::make(...) - create an object whose memory is automatically managed by the pool. The object dtor returns the
* allocated memory back to the pool
* - ::reserve(N) - prereserve memory slots for faster object creation
* @tparam T object type
* @tparam ThreadSafe if object pool is thread-safe or not
*/
template <typename T, bool ThreadSafe = false>
class obj_pool
{
/// single-thread obj pool deleter
struct obj_deleter {
explicit obj_deleter(obj_pool<T, ThreadSafe>* pool_) : pool(pool_) {}
void operator()(void* block)
{
static_cast<T*>(block)->~T();
pool->stack.push(static_cast<uint8_t*>(block));
}
obj_pool<T, ThreadSafe>* pool;
};
// memory stack type derivation (thread safe or not)
using stack_type = typename std::conditional<ThreadSafe, mutexed_memblock_stack, memblock_stack>::type;
// memory stack to cache allocate memory chunks
stack_type stack;
public:
using obj_ptr = std::unique_ptr<T, obj_deleter>;
~obj_pool()
{
uint8_t* block = stack.try_pop();
while (block != nullptr) {
delete[] block;
block = stack.try_pop();
}
}
/// create new object with given arguments. If no memory is pre-reserved in the pool, malloc is called.
template <typename... Args>
obj_ptr make(Args&&... args)
{
uint8_t* block = allocate_node();
new (block) T(std::forward<Args>(args)...);
return obj_ptr(reinterpret_cast<T*>(block), obj_deleter(this));
}
/// Pre-reserve N memory chunks for future object allocations
void reserve(size_t N)
{
static const size_t blocksize = std::max(sizeof(T), memblock_stack::min_memblock_size());
for (size_t i = 0; i < N; ++i) {
stack.push(new uint8_t[blocksize]);
}
}
size_t capacity() const { return stack.size(); }
private:
uint8_t* allocate_node()
{
static const size_t blocksize = std::max(sizeof(T), memblock_stack::min_memblock_size());
uint8_t* block = stack.try_pop();
if (block == nullptr) {
block = new uint8_t[blocksize];
}
return block;
}
};
template <typename T>
using mutexed_pool_obj = obj_pool<T, true>;
template <typename T>
using unique_pool_obj = typename obj_pool<T, false>::obj_ptr;
template <typename T>
using unique_mutexed_pool_obj = typename obj_pool<T, true>::obj_ptr;
} // namespace srslte
#endif // SRSLTE_MEM_POOL_H