Integrated AVX2 decoder in PDSCH object. Added inter-frame SSE decoder (not working and not integrated)

This commit is contained in:
Ismael Gomez 2017-06-19 17:21:46 +02:00
parent c1ef9da32a
commit f00ea8c8ed
12 changed files with 1155 additions and 538 deletions

View File

@ -53,6 +53,8 @@
#define SRSLTE_MAX_LAYERS 4
#define SRSLTE_MAX_CODEWORDS 2
#define SRSLTE_MAX_CODEBLOCKS 32
#define SRSLTE_LTE_CRC24A 0x1864CFB
#define SRSLTE_LTE_CRC24B 0X1800063
#define SRSLTE_LTE_CRC16 0x11021

View File

@ -52,12 +52,14 @@
#include "srslte/phy/fec/turbodecoder_gen.h"
#ifdef LV_HAVE_SSE
#include "srslte/phy/fec/turbodecoder_sse.h"
#include "srslte/phy/fec/turbodecoder_simd.h"
#else
#define SRSLTE_TDEC_NPAR 1
#endif
typedef struct SRSLTE_API {
#ifdef LV_HAVE_SSE
srslte_tdec_sse_t tdec_sse;
srslte_tdec_simd_t tdec_simd;
#else
float *input_conv;
srslte_tdec_gen_t tdec_gen;
@ -69,7 +71,16 @@ SRSLTE_API int srslte_tdec_init(srslte_tdec_t * h,
SRSLTE_API void srslte_tdec_free(srslte_tdec_t * h);
SRSLTE_API int srslte_tdec_reset(srslte_tdec_t * h, uint32_t long_cb);
SRSLTE_API int srslte_tdec_reset(srslte_tdec_t * h,
uint32_t long_cb);
SRSLTE_API int srslte_tdec_reset_cb(srslte_tdec_t * h,
uint32_t cb_idx);
SRSLTE_API int srslte_tdec_get_nof_iterations_cb(srslte_tdec_t * h,
uint32_t cb_idx);
SRSLTE_API int srslte_tdec_get_nof_parallel(srslte_tdec_t * h);
SRSLTE_API void srslte_tdec_iteration(srslte_tdec_t * h,
int16_t* input,
@ -89,4 +100,31 @@ SRSLTE_API int srslte_tdec_run_all(srslte_tdec_t * h,
uint32_t nof_iterations,
uint32_t long_cb);
SRSLTE_API void srslte_tdec_iteration_par(srslte_tdec_t * h,
int16_t* input[SRSLTE_TDEC_NPAR],
uint32_t nof_cb,
uint32_t long_cb);
SRSLTE_API void srslte_tdec_decision_par(srslte_tdec_t * h,
uint8_t *output[SRSLTE_TDEC_NPAR],
uint32_t nof_cb,
uint32_t long_cb);
SRSLTE_API void srslte_tdec_decision_byte_par(srslte_tdec_t * h,
uint8_t *output[SRSLTE_TDEC_NPAR],
uint32_t nof_cb,
uint32_t long_cb);
SRSLTE_API void srslte_tdec_decision_byte_par_cb(srslte_tdec_t * h,
uint8_t *output,
uint32_t cb_idx,
uint32_t long_cb);
SRSLTE_API int srslte_tdec_run_all_par(srslte_tdec_t * h,
int16_t * input[SRSLTE_TDEC_NPAR],
uint8_t *output[SRSLTE_TDEC_NPAR],
uint32_t nof_iterations,
uint32_t nof_cb,
uint32_t long_cb);
#endif

View File

@ -66,6 +66,8 @@ typedef struct SRSLTE_API {
float *parity;
int current_cbidx;
uint32_t current_cb_len;
uint32_t n_iter;
srslte_tc_interl_t interleaver[SRSLTE_NOF_TC_CB_SIZES];
} srslte_tdec_gen_t;

View File

@ -0,0 +1,119 @@
/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsLTE library.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
/**********************************************************************************************
* File: turbodecoder.h
*
* Description: Turbo Decoder.
* Parallel Concatenated Convolutional Code (PCCC) with two 8-state constituent
* encoders and one turbo code internal interleaver. The coding rate of turbo
* encoder is 1/3.
* MAP_GEN is the MAX-LOG-MAP generic implementation of the decoder.
*
* Reference: 3GPP TS 36.212 version 10.0.0 Release 10 Sec. 5.1.3.2
*********************************************************************************************/
#ifndef TURBODECODER_SSE_INTER_
#define TURBODECODER_SSE_INTER_
/** This is an simd inter-frame parallel turbo decoder. Parallizes 8 code-blocks using SSE
* This implementation is currently not functional and not used by the rest of the code
*/
#include "srslte/config.h"
#include "srslte/phy/fec/tc_interl.h"
#include "srslte/phy/fec/cbsegm.h"
#if LV_HAVE_AVX2
#define SRSLTE_TDEC_NPAR 16
#else
#define SRSLTE_TDEC_NPAR 8
#endif
typedef struct SRSLTE_API {
int max_long_cb;
int16_t *syst0;
int16_t *parity0;
int16_t *syst1;
int16_t *parity1;
int16_t *llr1;
int16_t *llr2;
int16_t *w;
int16_t *alpha;
uint32_t max_par_cb;
int current_cbidx;
uint32_t current_long_cb;
srslte_tc_interl_t interleaver[SRSLTE_NOF_TC_CB_SIZES];
int n_iter[SRSLTE_TDEC_NPAR];
} srslte_tdec_simd_inter_t;
SRSLTE_API int srslte_tdec_simd_inter_init(srslte_tdec_simd_inter_t * h,
uint32_t max_par_cb,
uint32_t max_long_cb);
SRSLTE_API void srslte_tdec_simd_inter_free(srslte_tdec_simd_inter_t * h);
SRSLTE_API int srslte_tdec_simd_inter_reset(srslte_tdec_simd_inter_t * h,
uint32_t long_cb);
SRSLTE_API int srslte_tdec_simd_inter_get_nof_iterations_cb(srslte_tdec_simd_inter_t * h,
uint32_t cb_idx);
SRSLTE_API int srslte_tdec_simd_inter_reset_cb(srslte_tdec_simd_inter_t * h,
uint32_t cb_idx);
SRSLTE_API void srslte_tdec_simd_inter_iteration(srslte_tdec_simd_inter_t * h,
int16_t * input[SRSLTE_TDEC_NPAR],
uint32_t nof_cb,
uint32_t long_cb);
SRSLTE_API void srslte_tdec_simd_inter_decision(srslte_tdec_simd_inter_t * h,
uint8_t *output[SRSLTE_TDEC_NPAR],
uint32_t nof_cb,
uint32_t long_cb);
SRSLTE_API void srslte_tdec_simd_inter_decision_byte(srslte_tdec_simd_inter_t * h,
uint8_t *output[SRSLTE_TDEC_NPAR],
uint32_t nof_cb,
uint32_t long_cb);
SRSLTE_API void srslte_tdec_simd_inter_decision_byte_cb(srslte_tdec_simd_inter_t * h,
uint8_t *output,
uint32_t cbidx,
uint32_t long_cb);
SRSLTE_API int srslte_tdec_simd_inter_run_all(srslte_tdec_simd_inter_t * h,
int16_t *input[SRSLTE_TDEC_NPAR],
uint8_t *output[SRSLTE_TDEC_NPAR],
uint32_t nof_iterations,
uint32_t nof_cb,
uint32_t long_cb);
#endif

View File

@ -257,13 +257,10 @@ int main(int argc, char **argv) {
int16_t *input[SRSLTE_TDEC_NPAR];
uint8_t *output[SRSLTE_TDEC_NPAR];
input[0] = llr_s;
if (SRSLTE_TDEC_NPAR == 2)
input[1] = llr_s;
output[0] = data_rx_bytes[0];
if (SRSLTE_TDEC_NPAR == 2)
output[1] = data_rx_bytes[1];
for (int n=0;n<SRSLTE_TDEC_NPAR;n++) {
input[n] = llr_s;
output[n] = data_rx_bytes[n];
}
gettimeofday(&tdata[1], NULL);
for (int k=0;k<nof_repetitions;k++) {
@ -284,7 +281,7 @@ int main(int argc, char **argv) {
}
printf("Eb/No: %2.2f %10d/%d ", SNR_MIN + i * ebno_inc, frame_cnt, nof_frames);
printf("BER: %.2e ", (float) errors / (nof_cb*frame_cnt * frame_length));
printf("%3.1f Mbps (%6.2f usec)", (float) SRSLTE_TDEC_NPAR*frame_length / mean_usec, mean_usec);
printf("%3.1f Mbps (%6.2f usec)", (float) (nof_cb*frame_length) / mean_usec, mean_usec);
printf("\r");
}

View File

@ -43,7 +43,7 @@
int srslte_tdec_init(srslte_tdec_t * h, uint32_t max_long_cb) {
#ifdef LV_HAVE_SSE
return srslte_tdec_simd_init(&h->tdec_simd, max_long_cb);
return srslte_tdec_simd_init(&h->tdec_simd, SRSLTE_TDEC_NPAR, max_long_cb);
#else
h->input_conv = srslte_vec_malloc(sizeof(float) * (3*max_long_cb+12));
if (!h->input_conv) {
@ -56,7 +56,7 @@ int srslte_tdec_init(srslte_tdec_t * h, uint32_t max_long_cb) {
void srslte_tdec_free(srslte_tdec_t * h) {
#ifdef LV_HAVE_SSE
srslte_tdec_simd_free(&h->tdec_simd);
srslte_tdec_simd_free(&h->tdec_simd);
#else
if (h->input_conv) {
free(h->input_conv);
@ -74,9 +74,26 @@ int srslte_tdec_reset(srslte_tdec_t * h, uint32_t long_cb) {
#endif
}
int srslte_tdec_reset_cb(srslte_tdec_t * h, uint32_t cb_idx) {
#ifdef LV_HAVE_SSE
return srslte_tdec_simd_reset_cb(&h->tdec_simd, cb_idx);
#else
return srslte_tdec_gen_reset(&h->tdec_gen, h->tdec_gen.current_cb_len);
#endif
}
int srslte_tdec_get_nof_iterations_cb(srslte_tdec_t * h, uint32_t cb_idx)
{
#ifdef LV_HAVE_SSE
return srslte_tdec_simd_get_nof_iterations_cb(&h->tdec_simd, cb_idx);
#else
return h->tdec_gen.n_iter;
#endif
}
void srslte_tdec_iteration_par(srslte_tdec_t * h, int16_t* input[SRSLTE_TDEC_NPAR], uint32_t nof_cb, uint32_t long_cb) {
#ifdef LV_HAVE_SSE
srslte_tdec_simd_iteration(&h->tdec_simd, input, nof_cb, long_cb);
srslte_tdec_simd_iteration(&h->tdec_simd, input, nof_cb, long_cb);
#else
srslte_vec_convert_if(input[0], h->input_conv, 0.01, 3*long_cb+12);
srslte_tdec_gen_iteration(&h->tdec_gen, h->input_conv, long_cb);
@ -105,12 +122,20 @@ void srslte_tdec_decision(srslte_tdec_t * h, uint8_t *output, uint32_t long_cb)
void srslte_tdec_decision_byte_par(srslte_tdec_t * h, uint8_t *output[SRSLTE_TDEC_NPAR], uint32_t nof_cb, uint32_t long_cb) {
#ifdef LV_HAVE_SSE
srslte_tdec_simd_decision_byte(&h->tdec_simd, output, nof_cb, long_cb);
srslte_tdec_simd_decision_byte(&h->tdec_simd, output, nof_cb, long_cb);
#else
srslte_tdec_gen_decision_byte(&h->tdec_gen, output[0], long_cb);
#endif
}
void srslte_tdec_decision_byte_par_cb(srslte_tdec_t * h, uint8_t *output, uint32_t cb_idx, uint32_t long_cb) {
#ifdef LV_HAVE_SSE
srslte_tdec_simd_decision_byte_cb(&h->tdec_simd, output, cb_idx, long_cb);
#else
srslte_tdec_gen_decision_byte(&h->tdec_gen, output, long_cb);
#endif
}
void srslte_tdec_decision_byte(srslte_tdec_t * h, uint8_t *output, uint32_t long_cb) {
uint8_t *output_par[SRSLTE_TDEC_NPAR];
output_par[0] = output;
@ -121,7 +146,7 @@ int srslte_tdec_run_all_par(srslte_tdec_t * h, int16_t * input[SRSLTE_TDEC_NPAR]
uint8_t *output[SRSLTE_TDEC_NPAR],
uint32_t nof_iterations, uint32_t nof_cb, uint32_t long_cb) {
#ifdef LV_HAVE_SSE
return srslte_tdec_simd_run_all(&h->tdec_simd, input, output, nof_iterations, nof_cb, long_cb);
return srslte_tdec_simd_run_all(&h->tdec_simd, input, output, nof_iterations, nof_cb, long_cb);
#else
srslte_vec_convert_if(input[0], h->input_conv, 0.01, 3*long_cb+12);
return srslte_tdec_gen_run_all(&h->tdec_gen, h->input_conv, output[0], nof_iterations, long_cb);

View File

@ -153,8 +153,6 @@ void map_avx_beta(map_gen_t * s, int16_t * output[SRSLTE_TDEC_NPAR], uint32_t lo
__m256i gv;
int16_t *b = &s->branch[2*NCB*long_cb-16];
__m256i *gPtr = (__m256i*) b;
__m256i bn2, bp2;
/* This defines a beta computation step:
* Adds and substracts the branch metrics to the previous beta step,
@ -175,10 +173,10 @@ void map_avx_beta(map_gen_t * s, int16_t * output[SRSLTE_TDEC_NPAR], uint32_t lo
alphaPtr--;\
bp = _mm256_add_epi16(bp, alpha_k);\
bn = _mm256_add_epi16(bn, alpha_k);\
bn2 = _mm256_sub_epi8(_mm256_set1_epi16(0x7FFF), bn);\
bp2 = _mm256_sub_epi8(_mm256_set1_epi16(0x7FFF), bp);\
output[0][k-d] = hMax0(bn2) - hMax0(bp2);\
output[1][k-d] = hMax1(bn2) - hMax1(bp2);
bn = _mm256_sub_epi16(_mm256_set1_epi16(0x7FFF), bn);\
bp = _mm256_sub_epi16(_mm256_set1_epi16(0x7FFF), bp);\
output[0][k-d] = hMax0(bn) - hMax0(bp);\
output[1][k-d] = hMax1(bn) - hMax1(bp);
/* The tail does not require to load alpha or produce outputs. Only update
* beta metrics accordingly */
@ -309,7 +307,7 @@ void map_avx_alpha(map_gen_t * s, uint32_t long_cb)
an = _mm256_shuffle_epi8(an, shuf_an);\
alpha_k = _mm256_max_epi16(ap, an);\
_mm256_store_si256(alphaPtr, alpha_k);\
alphaPtr++; \
alphaPtr++;\
/* In this loop, we compute 8 steps and normalize twice for each branch metrics memory load */
@ -335,15 +333,62 @@ void map_avx_alpha(map_gen_t * s, uint32_t long_cb)
}
}
/* Compute branch metrics (gamma) */
void map_avx_gamma(map_gen_t * h, int16_t *input, int16_t *app, int16_t *parity, uint32_t cbidx, uint32_t long_cb)
void map_sse_gamma_single(int16_t *output, int16_t *input, int16_t *app, int16_t *parity)
{
__m128i res10, res20, res11, res21, res1, res2;
__m128i res00, res10, res01, res11, res0, res1;
__m128i in, ap, pa, g1, g0;
__m128i *inPtr = (__m128i*) input;
__m128i *appPtr = (__m128i*) app;
__m128i *paPtr = (__m128i*) parity;
__m128i *resPtr = (__m128i*) output;
__m128i res00_mask = _mm_set_epi8(0xff,0xff,7,6,0xff,0xff,5,4,0xff,0xff,3,2,0xff,0xff,1,0);
__m128i res10_mask = _mm_set_epi8(0xff,0xff,15,14,0xff,0xff,13,12,0xff,0xff,11,10,0xff,0xff,9,8);
__m128i res01_mask = _mm_set_epi8(7,6,0xff,0xff,5,4,0xff,0xff,3,2,0xff,0xff,1,0,0xff,0xff);
__m128i res11_mask = _mm_set_epi8(15,14,0xff,0xff,13,12,0xff,0xff,11,10,0xff,0xff,9,8,0xff,0xff);
in = _mm_load_si128(inPtr);
inPtr++;
pa = _mm_load_si128(paPtr);
paPtr++;
if (appPtr) {
ap = _mm_load_si128(appPtr);
appPtr++;
in = _mm_add_epi16(ap, in);
}
g1 = _mm_add_epi16(in, pa);
g0 = _mm_sub_epi16(in, pa);
g1 = _mm_srai_epi16(g1, 1);
g0 = _mm_srai_epi16(g0, 1);
res00 = _mm_shuffle_epi8(g0, res00_mask);
res10 = _mm_shuffle_epi8(g0, res10_mask);
res01 = _mm_shuffle_epi8(g1, res01_mask);
res11 = _mm_shuffle_epi8(g1, res11_mask);
res0 = _mm_or_si128(res00, res01);
res1 = _mm_or_si128(res10, res11);
_mm_store_si128(resPtr, res0);
resPtr++;
_mm_store_si128(resPtr, res1);
resPtr++;
}
/* Compute branch metrics (gamma) */
void map_avx_gamma(map_gen_t * h, int16_t *input, int16_t *app, int16_t *parity, uint32_t cbidx, uint32_t long_cb)
{
__m128i res10, res20, res11, res21, res1, res2;
__m256i in, ap, pa, g1, g0;
__m256i *inPtr = (__m256i*) input;
__m256i *appPtr = (__m256i*) app;
__m256i *paPtr = (__m256i*) parity;
__m128i *resPtr = (__m128i*) h->branch;
if (cbidx) {
@ -351,32 +396,37 @@ void map_avx_gamma(map_gen_t * h, int16_t *input, int16_t *app, int16_t *parity,
}
__m128i res10_mask = _mm_set_epi8(0xff,0xff,7,6,0xff,0xff,5,4,0xff,0xff,3,2,0xff,0xff,1,0);
__m128i res20_mask = _mm_set_epi8(0xff,0xff,15,14,0xff,0xff,13,12,0xff,0xff,11,10,0xff,0xff,9,8);
__m128i res11_mask = _mm_set_epi8(7,6,0xff,0xff,5,4,0xff,0xff,3,2,0xff,0xff,1,0,0xff,0xff);
__m128i res20_mask = _mm_set_epi8(0xff,0xff,15,14,0xff,0xff,13,12,0xff,0xff,11,10,0xff,0xff,9,8);
__m128i res21_mask = _mm_set_epi8(15,14,0xff,0xff,13,12,0xff,0xff,11,10,0xff,0xff,9,8,0xff,0xff);
for (int i=0;i<long_cb/8;i++) {
in = _mm_load_si128(inPtr);
for (int i=0;i<long_cb/16;i++) {
in = _mm256_load_si256(inPtr);
inPtr++;
pa = _mm_load_si128(paPtr);
pa = _mm256_load_si256(paPtr);
paPtr++;
if (appPtr) {
ap = _mm_load_si128(appPtr);
ap = _mm256_load_si256(appPtr);
appPtr++;
in = _mm_add_epi16(ap, in);
in = _mm256_add_epi16(ap, in);
}
g1 = _mm_add_epi16(in, pa);
g0 = _mm_sub_epi16(in, pa);
g1 = _mm_srai_epi16(g1, 1);
g0 = _mm_srai_epi16(g0, 1);
g0 = _mm256_sub_epi16(in, pa);
g1 = _mm256_add_epi16(in, pa);
g0 = _mm256_srai_epi16(g0, 1);
g1 = _mm256_srai_epi16(g1, 1);
res10 = _mm_shuffle_epi8(g0, res10_mask);
res20 = _mm_shuffle_epi8(g0, res20_mask);
res11 = _mm_shuffle_epi8(g1, res11_mask);
res21 = _mm_shuffle_epi8(g1, res21_mask);
__m128i g0_t = _mm256_extractf128_si256(g0, 0);
__m128i g1_t = _mm256_extractf128_si256(g1, 0);
res10 = _mm_shuffle_epi8(g0_t, res10_mask);
res11 = _mm_shuffle_epi8(g1_t, res11_mask);
res20 = _mm_shuffle_epi8(g0_t, res20_mask);
res21 = _mm_shuffle_epi8(g1_t, res21_mask);
res1 = _mm_or_si128(res10, res11);
res2 = _mm_or_si128(res20, res21);
@ -386,7 +436,31 @@ void map_avx_gamma(map_gen_t * h, int16_t *input, int16_t *app, int16_t *parity,
resPtr++;
_mm_store_si128(resPtr, res2);
resPtr++;
resPtr++;
resPtr++;
g0_t = _mm256_extractf128_si256(g0, 1);
g1_t = _mm256_extractf128_si256(g1, 1);
res10 = _mm_shuffle_epi8(g0_t, res10_mask);
res11 = _mm_shuffle_epi8(g1_t, res11_mask);
res20 = _mm_shuffle_epi8(g0_t, res20_mask);
res21 = _mm_shuffle_epi8(g1_t, res21_mask);
res1 = _mm_or_si128(res10, res11);
res2 = _mm_or_si128(res20, res21);
_mm_store_si128(resPtr, res1);
resPtr++;
resPtr++;
_mm_store_si128(resPtr, res2);
resPtr++;
resPtr++;
}
if (long_cb%16) {
map_sse_gamma_single((int16_t*) resPtr, (int16_t*) appPtr, (int16_t*) inPtr, (int16_t*) paPtr);
}
for (int i=long_cb;i<long_cb+3;i++) {

View File

@ -96,20 +96,23 @@ void map_simd_gamma(map_gen_t * s, int16_t *input, int16_t *app, int16_t *parity
}
/* Inititalizes constituent decoder object */
int map_simd_init(map_gen_t * h, int max_long_cb)
int map_simd_init(map_gen_t * h, uint32_t max_par_cb, uint32_t max_long_cb)
{
bzero(h, sizeof(map_gen_t));
h->alpha = srslte_vec_malloc(sizeof(int16_t) * (max_long_cb + SRSLTE_TCOD_TOTALTAIL + 1) * NUMSTATES * SRSLTE_TDEC_NPAR);
h->max_par_cb = max_par_cb;
h->max_long_cb = max_long_cb;
h->alpha = srslte_vec_malloc(sizeof(int16_t) * (max_long_cb + SRSLTE_TCOD_TOTALTAIL + 1) * NUMSTATES * h->max_par_cb);
if (!h->alpha) {
perror("srslte_vec_malloc");
return -1;
}
h->branch = srslte_vec_malloc(sizeof(int16_t) * (max_long_cb + SRSLTE_TCOD_TOTALTAIL + 1) * NUMSTATES * SRSLTE_TDEC_NPAR);
h->branch = srslte_vec_malloc(sizeof(int16_t) * (max_long_cb + SRSLTE_TCOD_TOTALTAIL + 1) * NUMSTATES * h->max_par_cb);
if (!h->branch) {
perror("srslte_vec_malloc");
return -1;
}
h->max_long_cb = max_long_cb;
return 0;
}
@ -142,15 +145,16 @@ void map_simd_dec(map_gen_t * h, int16_t * input[SRSLTE_TDEC_NPAR], int16_t *app
}
/* Initializes the turbo decoder object */
int srslte_tdec_simd_init(srslte_tdec_simd_t * h, uint32_t max_long_cb)
int srslte_tdec_simd_init(srslte_tdec_simd_t * h, uint32_t max_par_cb, uint32_t max_long_cb)
{
int ret = -1;
bzero(h, sizeof(srslte_tdec_simd_t));
uint32_t len = max_long_cb + SRSLTE_TCOD_TOTALTAIL;
h->max_long_cb = max_long_cb;
for (int i=0;i<SRSLTE_TDEC_NPAR;i++) {
h->max_par_cb = max_par_cb;
for (int i=0;i<h->max_par_cb;i++) {
h->app1[i] = srslte_vec_malloc(sizeof(int16_t) * len);
if (!h->app1[i]) {
perror("srslte_vec_malloc");
@ -189,7 +193,7 @@ int srslte_tdec_simd_init(srslte_tdec_simd_t * h, uint32_t max_long_cb)
}
if (map_simd_init(&h->dec, h->max_long_cb)) {
if (map_simd_init(&h->dec, h->max_par_cb, h->max_long_cb)) {
goto clean_and_exit;
}
@ -209,7 +213,7 @@ clean_and_exit:if (ret == -1) {
void srslte_tdec_simd_free(srslte_tdec_simd_t * h)
{
for (int i=0;i<SRSLTE_TDEC_NPAR;i++) {
for (int i=0;i<h->max_par_cb;i++) {
if (h->app1[i]) {
free(h->app1[i]);
}
@ -333,33 +337,34 @@ void deinterleave_input_simd(srslte_tdec_simd_t *h, int16_t *input, uint32_t cbi
void srslte_tdec_simd_iteration(srslte_tdec_simd_t * h, int16_t * input[SRSLTE_TDEC_NPAR], uint32_t nof_cb, uint32_t long_cb)
{
int16_t *tmp_app[SRSLTE_TDEC_NPAR];
if (h->current_cbidx >= 0) {
uint16_t *inter = h->interleaver[h->current_cbidx].forward;
uint16_t *deinter = h->interleaver[h->current_cbidx].reverse;
if (h->n_iter == 0) {
for (int i=0;i<nof_cb;i++) {
for (int i=0;i<nof_cb;i++) {
if (h->n_iter[i] == 0) {
deinterleave_input_simd(h, input[i], i, long_cb);
}
}
// Add apriori information to decoder 1
if (h->n_iter > 0) {
for (int i=0;i<nof_cb;i++) {
for (int i=0;i<nof_cb;i++) {
if (h->n_iter[i] > 0) {
srslte_vec_sub_sss(h->app1[i], h->ext1[i], h->app1[i], long_cb);
}
}
// Run MAP DEC #1
if (h->n_iter == 0) {
map_simd_dec(&h->dec, h->syst, NULL, h->parity0, h->ext1, nof_cb, long_cb);
} else {
map_simd_dec(&h->dec, h->syst, h->app1, h->parity0, h->ext1, nof_cb, long_cb);
for (int i=0;i<h->max_par_cb;i++) {
tmp_app[i] = h->n_iter[i]?h->app1[i]:NULL;
}
map_simd_dec(&h->dec, h->syst, tmp_app, h->parity0, h->ext1, nof_cb, long_cb);
// Convert aposteriori information into extrinsic information
if (h->n_iter > 0) {
for (int i=0;i<nof_cb;i++) {
for (int i=0;i<nof_cb;i++) {
if (h->n_iter[i] > 0) {
srslte_vec_sub_sss(h->ext1[i], h->app1[i], h->ext1[i], long_cb);
}
}
@ -377,7 +382,9 @@ void srslte_tdec_simd_iteration(srslte_tdec_simd_t * h, int16_t * input[SRSLTE_T
srslte_vec_lut_sss(h->ext2[i], inter, h->app1[i], long_cb);
}
h->n_iter++;
for (int i=0;i<h->max_par_cb;i++) {
h->n_iter[i]++;
}
} else {
fprintf(stderr, "Error CB index not set (call srslte_tdec_simd_reset() first\n");
}
@ -391,7 +398,9 @@ int srslte_tdec_simd_reset(srslte_tdec_simd_t * h, uint32_t long_cb)
h->max_long_cb);
return -1;
}
h->n_iter = 0;
for (int i=0;i<h->max_par_cb;i++) {
h->n_iter[i] = 0;
}
h->current_cbidx = srslte_cbsegm_cbindex(long_cb);
if (h->current_cbidx < 0) {
fprintf(stderr, "Invalid CB length %d\n", long_cb);
@ -400,6 +409,17 @@ int srslte_tdec_simd_reset(srslte_tdec_simd_t * h, uint32_t long_cb)
return 0;
}
int srslte_tdec_simd_reset_cb(srslte_tdec_simd_t * h, uint32_t cb_idx)
{
h->n_iter[cb_idx] = 0;
return 0;
}
int srslte_tdec_simd_get_nof_iterations_cb(srslte_tdec_simd_t * h, uint32_t cb_idx)
{
return h->n_iter[cb_idx];
}
void tdec_simd_decision(srslte_tdec_simd_t * h, uint8_t *output, uint32_t cbidx, uint32_t long_cb)
{
__m128i zero = _mm_set1_epi16(0);
@ -433,7 +453,7 @@ void srslte_tdec_simd_decision(srslte_tdec_simd_t * h, uint8_t *output[SRSLTE_TD
}
}
void tdec_simd_decision_byte(srslte_tdec_simd_t * h, uint8_t *output, uint32_t cbidx, uint32_t long_cb)
void srslte_tdec_simd_decision_byte_cb(srslte_tdec_simd_t * h, uint8_t *output, uint32_t cbidx, uint32_t long_cb)
{
uint8_t mask[8] = {0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1};
@ -449,17 +469,13 @@ void tdec_simd_decision_byte(srslte_tdec_simd_t * h, uint8_t *output, uint32_t c
uint8_t out7 = h->app1[cbidx][8*i+7]>0?mask[7]:0;
output[i] = out0 | out1 | out2 | out3 | out4 | out5 | out6 | out7;
//if (i<10) {
// printf("output[%d]=%d\n",i,output[i]);
//}
}
}
void srslte_tdec_simd_decision_byte(srslte_tdec_simd_t * h, uint8_t *output[SRSLTE_TDEC_NPAR], uint32_t nof_cb, uint32_t long_cb)
{
for (int i=0;i<nof_cb;i++) {
tdec_simd_decision_byte(h, output[i], i, long_cb);
srslte_tdec_simd_decision_byte_cb(h, output[i], i, long_cb);
}
}
@ -474,7 +490,7 @@ int srslte_tdec_simd_run_all(srslte_tdec_simd_t * h, int16_t * input[SRSLTE_TDEC
do {
srslte_tdec_simd_iteration(h, input, nof_cb, long_cb);
} while (h->n_iter < nof_iterations);
} while (h->n_iter[0] < nof_iterations);
srslte_tdec_simd_decision_byte(h, output, nof_cb, long_cb);

View File

@ -0,0 +1,299 @@
/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsLTE library.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <strings.h>
#include <math.h>
#include "srslte/phy/fec/turbodecoder_simd_inter.h"
#include "srslte/phy/utils/vector.h"
#define TOTALTAIL 12
#ifdef LV_HAVE_SSE
#include <smmintrin.h>
void map_see_inter_alpha(srslte_tdec_simd_inter_t * s, int16_t *input, int16_t *parity, uint32_t long_cb);
void map_sse_inter_beta(srslte_tdec_simd_inter_t * s, int16_t *input, int16_t *parity, int16_t * output, uint32_t long_cb);
void sse_inter_update_w(srslte_tdec_simd_inter_t *h, uint16_t *deinter, uint32_t long_cb);
void sse_inter_extract_syst1(srslte_tdec_simd_inter_t *h, uint16_t *inter, uint32_t long_cb);
static void map_sse_inter_dec(srslte_tdec_simd_inter_t * h, int16_t * input, int16_t * parity, int16_t * output,
uint32_t long_cb)
{
map_see_inter_alpha(h, input, parity, long_cb);
map_sse_inter_beta(h, input, parity, output, long_cb);
}
/************************************************
*
* TURBO DECODER INTERFACE
*
************************************************/
int srslte_tdec_simd_inter_init(srslte_tdec_simd_inter_t * h, uint32_t max_par_cb, uint32_t max_long_cb)
{
int ret = -1;
bzero(h, sizeof(srslte_tdec_simd_inter_t));
uint32_t len = max_long_cb + 12;
h->max_long_cb = max_long_cb;
h->max_par_cb = max_par_cb;
h->llr1 = srslte_vec_malloc(sizeof(int16_t) * len * h->max_par_cb);
if (!h->llr1) {
perror("srslte_vec_malloc");
goto clean_and_exit;
}
h->llr2 = srslte_vec_malloc(sizeof(int16_t) * len * h->max_par_cb);
if (!h->llr2) {
perror("srslte_vec_malloc");
goto clean_and_exit;
}
h->w = srslte_vec_malloc(sizeof(int16_t) * len * h->max_par_cb);
if (!h->w) {
perror("srslte_vec_malloc");
goto clean_and_exit;
}
h->syst0 = srslte_vec_malloc(sizeof(int16_t) * len * h->max_par_cb);
if (!h->syst0) {
perror("srslte_vec_malloc");
goto clean_and_exit;
}
h->syst1 = srslte_vec_malloc(sizeof(int16_t) * len * h->max_par_cb);
if (!h->syst1) {
perror("srslte_vec_malloc");
goto clean_and_exit;
}
h->parity0 = srslte_vec_malloc(sizeof(int16_t) * len * h->max_par_cb);
if (!h->parity0) {
perror("srslte_vec_malloc");
goto clean_and_exit;
}
h->parity1 = srslte_vec_malloc(sizeof(int16_t) * len * h->max_par_cb);
if (!h->parity1) {
perror("srslte_vec_malloc");
goto clean_and_exit;
}
h->alpha = srslte_vec_malloc(sizeof(int16_t) * 8*(len+12) * h->max_par_cb);
if (!h->alpha) {
perror("srslte_vec_malloc");
goto clean_and_exit;
}
for (int i=0;i<SRSLTE_NOF_TC_CB_SIZES;i++) {
if (srslte_tc_interl_init(&h->interleaver[i], srslte_cbsegm_cbsize(i)) < 0) {
goto clean_and_exit;
}
srslte_tc_interl_LTE_gen(&h->interleaver[i], srslte_cbsegm_cbsize(i));
}
h->current_cbidx = -1;
ret = 0;
clean_and_exit:if (ret == -1) {
srslte_tdec_simd_inter_free(h);
}
return ret;
}
void srslte_tdec_simd_inter_free(srslte_tdec_simd_inter_t * h)
{
if (h->llr1) {
free(h->llr1);
}
if (h->llr2) {
free(h->llr2);
}
if (h->w) {
free(h->w);
}
if (h->syst0) {
free(h->syst0);
}
if (h->syst1) {
free(h->syst1);
}
if (h->parity0) {
free(h->parity0);
}
if (h->parity1) {
free(h->parity1);
}
if (h->alpha) {
free(h->alpha);
}
for (int i=0;i<SRSLTE_NOF_TC_CB_SIZES;i++) {
srslte_tc_interl_free(&h->interleaver[i]);
}
bzero(h, sizeof(srslte_tdec_simd_inter_t));
}
/* Deinterleave for inter-frame parallelization */
void extract_input(srslte_tdec_simd_inter_t *h, int16_t *input, uint32_t cbidx, uint32_t long_cb)
{
for (int i=0;i<long_cb;i++) {
h->syst0[h->max_par_cb*i+cbidx] = input[3*i+0];
h->parity0[h->max_par_cb*i+cbidx] = input[3*i+1];
h->parity1[h->max_par_cb*i+cbidx] = input[3*i+2];
}
for (int i = long_cb; i < long_cb + 3; i++) {
h->syst0[h->max_par_cb*i+cbidx] = input[3*long_cb + 2*(i - long_cb)];
h->syst1[h->max_par_cb*i+cbidx] = input[3*long_cb + 2*(i - long_cb)];
h->parity0[h->max_par_cb*i+cbidx] = input[3*long_cb + 2*(i - long_cb) + 1];
h->parity0[h->max_par_cb*i+cbidx] = input[3*long_cb + 2*(i - long_cb) + 2];
}
}
void srslte_tdec_simd_inter_iteration(srslte_tdec_simd_inter_t * h, int16_t *input[SRSLTE_TDEC_NPAR], uint32_t nof_cb, uint32_t long_cb)
{
if (h->current_cbidx >= 0) {
uint16_t *inter = h->interleaver[h->current_cbidx].forward;
uint16_t *deinter = h->interleaver[h->current_cbidx].reverse;
// Prepare systematic and parity bits for MAP DEC #1
for (int i=0;i<nof_cb;i++) {
if (h->n_iter[i] == 0) {
extract_input(h, input[i], i, long_cb);
}
srslte_vec_sum_sss(h->syst0, h->w, h->syst0, long_cb*h->max_par_cb);
}
// Run MAP DEC #1
map_sse_inter_dec(h, h->syst0, h->parity0, h->llr1, long_cb);
// Prepare systematic and parity bits for MAP DEC #1
sse_inter_extract_syst1(h, inter, long_cb);
// Run MAP DEC #2
map_sse_inter_dec(h, h->syst1, h->parity1, h->llr2, long_cb);
// Update a-priori LLR from the last iteration
sse_inter_update_w(h, deinter, long_cb);
} else {
fprintf(stderr, "Error CB index not set (call srslte_tdec_simd_inter_reset() first\n");
}
}
int srslte_tdec_simd_inter_reset_cb(srslte_tdec_simd_inter_t * h, uint32_t cb_idx)
{
for (int i=0;i<h->current_long_cb;i++) {
h->w[h->max_par_cb*i+cb_idx] = 0;
}
return 0;
}
int srslte_tdec_simd_inter_reset(srslte_tdec_simd_inter_t * h, uint32_t long_cb)
{
if (long_cb > h->max_long_cb) {
fprintf(stderr, "TDEC was initialized for max_long_cb=%d\n",
h->max_long_cb);
return -1;
}
h->current_long_cb = long_cb;
h->current_cbidx = srslte_cbsegm_cbindex(long_cb);
if (h->current_cbidx < 0) {
fprintf(stderr, "Invalid CB length %d\n", long_cb);
return -1;
}
memset(h->w, 0, sizeof(int16_t) * long_cb * h->max_par_cb);
return 0;
}
void srslte_tdec_simd_inter_decision_cb(srslte_tdec_simd_inter_t * h, uint8_t *output, uint32_t cb_idx, uint32_t long_cb)
{
uint16_t *deinter = h->interleaver[h->current_cbidx].reverse;
uint32_t i;
for (i = 0; i < long_cb; i++) {
output[i] = (h->llr2[h->max_par_cb*deinter[i]+cb_idx] > 0) ? 1 : 0;
}
}
void srslte_tdec_simd_inter_decision(srslte_tdec_simd_inter_t * h, uint8_t *output[SRSLTE_TDEC_NPAR], uint32_t nof_cb, uint32_t long_cb)
{
for (int i=0;i<nof_cb;i++) {
srslte_tdec_simd_inter_decision_cb(h, output[i], i, long_cb);
}
}
void srslte_tdec_simd_inter_decision_byte_cb(srslte_tdec_simd_inter_t * h, uint8_t *output, uint32_t cb_idx, uint32_t long_cb)
{
uint32_t i;
uint8_t mask[8] = {0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1};
uint16_t *deinter = h->interleaver[h->current_cbidx].reverse;
#define indexOf_cb(idx, cb) (h->max_par_cb*(deinter[8*i+idx])+cb)
// long_cb is always byte aligned
for (i = 0; i < long_cb/8; i++) {
uint8_t out0 = h->llr2[indexOf_cb(0, cb_idx)]>0?mask[0]:0;
uint8_t out1 = h->llr2[indexOf_cb(1, cb_idx)]>0?mask[1]:0;
uint8_t out2 = h->llr2[indexOf_cb(2, cb_idx)]>0?mask[2]:0;
uint8_t out3 = h->llr2[indexOf_cb(3, cb_idx)]>0?mask[3]:0;
uint8_t out4 = h->llr2[indexOf_cb(4, cb_idx)]>0?mask[4]:0;
uint8_t out5 = h->llr2[indexOf_cb(5, cb_idx)]>0?mask[5]:0;
uint8_t out6 = h->llr2[indexOf_cb(6, cb_idx)]>0?mask[6]:0;
uint8_t out7 = h->llr2[indexOf_cb(7, cb_idx)]>0?mask[7]:0;
output[i] = out0 | out1 | out2 | out3 | out4 | out5 | out6 | out7;
}
}
void srslte_tdec_simd_inter_decision_byte(srslte_tdec_simd_inter_t * h, uint8_t *output[SRSLTE_TDEC_NPAR], uint32_t nof_cb, uint32_t long_cb)
{
for (int i=0;i<nof_cb;i++) {
srslte_tdec_simd_inter_decision_byte_cb(h, output[i], i, long_cb);
}
}
int srslte_tdec_simd_inter_run_all(srslte_tdec_simd_inter_t * h,
int16_t *input[SRSLTE_TDEC_NPAR], uint8_t *output[SRSLTE_TDEC_NPAR],
uint32_t nof_iterations, uint32_t nof_cb, uint32_t long_cb)
{
uint32_t iter = 0;
if (srslte_tdec_simd_inter_reset(h, long_cb)) {
return SRSLTE_ERROR;
}
do {
srslte_tdec_simd_inter_iteration(h, input, nof_cb, long_cb);
iter++;
} while (iter < nof_iterations);
srslte_tdec_simd_inter_decision_byte(h, output, nof_cb, long_cb);
return SRSLTE_SUCCESS;
}
#endif

View File

@ -31,7 +31,7 @@
#include <strings.h>
#include <math.h>
#include "srslte/phy/fec/turbodecoder_sse.h"
#include "srslte/phy/fec/turbodecoder_simd.h"
#include "srslte/phy/utils/vector.h"
#include <inttypes.h>
@ -62,17 +62,20 @@ static void print_128i(__m128i x) {
printf("]\n");
}
*/
//#define use_beta_transposed_max
#ifndef use_beta_transposed_max
/* Computes the horizontal MAX from 8 16-bit integers using the minpos_epu16 SSE4.1 instruction */
static inline int16_t hMax(__m128i buffer)
{
__m128i tmp1 = _mm_sub_epi8(_mm_set1_epi16(0x7FFF), buffer);
__m128i tmp1 = _mm_sub_epi16(_mm_set1_epi16(0x7FFF), buffer);
__m128i tmp3 = _mm_minpos_epu16(tmp1);
return (int16_t)(_mm_cvtsi128_si32(tmp3));
}
/* Computes beta values */
void map_gen_beta(map_gen_t * s, int16_t * output, uint32_t long_cb)
void map_sse_beta(map_gen_t * s, int16_t * output, uint32_t long_cb)
{
int k;
uint32_t end = long_cb + 3;
@ -138,8 +141,8 @@ void map_gen_beta(map_gen_t * s, int16_t * output, uint32_t long_cb)
alphaPtr--;\
bp = _mm_add_epi16(bp, alpha_k);\
bn = _mm_add_epi16(bn, alpha_k);\
output[k-d] = hMax(bn) - hMax(bp);
output[k-d] = hMax(bn)-hMax(bp);
/* The tail does not require to load alpha or produce outputs. Only update
* beta metrics accordingly */
for (k=end-1; k>=long_cb; k--) {
@ -154,6 +157,7 @@ void map_gen_beta(map_gen_t * s, int16_t * output, uint32_t long_cb)
for (; k >= 0; k-=8) {
gv = _mm_load_si128(gPtr);
gPtr--;
BETA_STEP_CNT(0,0);
BETA_STEP_CNT(1,1);
BETA_STEP_CNT(2,2);
@ -165,14 +169,17 @@ void map_gen_beta(map_gen_t * s, int16_t * output, uint32_t long_cb)
BETA_STEP_CNT(0,4);
BETA_STEP_CNT(1,5);
BETA_STEP_CNT(2,6);
BETA_STEP_CNT(3,7);
BETA_STEP_CNT(3,7);
norm = _mm_shuffle_epi8(beta_k, shuf_norm);
beta_k = _mm_sub_epi16(beta_k, norm);
}
}
#endif
/* Computes alpha metrics */
void map_gen_alpha(map_gen_t * s, uint32_t long_cb)
void map_sse_alpha(map_gen_t * s, uint32_t long_cb)
{
uint32_t k;
int16_t *alpha = s->alpha;
@ -261,9 +268,9 @@ void map_gen_alpha(map_gen_t * s, uint32_t long_cb)
}
/* Compute branch metrics (gamma) */
void map_gen_gamma(map_gen_t * h, int16_t *input, int16_t *app, int16_t *parity, uint32_t long_cb)
void map_sse_gamma(map_gen_t * h, int16_t *input, int16_t *app, int16_t *parity, uint32_t long_cb)
{
__m128i res10, res20, res11, res21, res1, res2;
__m128i res00, res10, res01, res11, res0, res1;
__m128i in, ap, pa, g1, g0;
__m128i *inPtr = (__m128i*) input;
@ -271,10 +278,10 @@ void map_gen_gamma(map_gen_t * h, int16_t *input, int16_t *app, int16_t *parity,
__m128i *paPtr = (__m128i*) parity;
__m128i *resPtr = (__m128i*) h->branch;
__m128i res10_mask = _mm_set_epi8(0xff,0xff,7,6,0xff,0xff,5,4,0xff,0xff,3,2,0xff,0xff,1,0);
__m128i res20_mask = _mm_set_epi8(0xff,0xff,15,14,0xff,0xff,13,12,0xff,0xff,11,10,0xff,0xff,9,8);
__m128i res11_mask = _mm_set_epi8(7,6,0xff,0xff,5,4,0xff,0xff,3,2,0xff,0xff,1,0,0xff,0xff);
__m128i res21_mask = _mm_set_epi8(15,14,0xff,0xff,13,12,0xff,0xff,11,10,0xff,0xff,9,8,0xff,0xff);
__m128i res00_mask = _mm_set_epi8(0xff,0xff,7,6,0xff,0xff,5,4,0xff,0xff,3,2,0xff,0xff,1,0);
__m128i res10_mask = _mm_set_epi8(0xff,0xff,15,14,0xff,0xff,13,12,0xff,0xff,11,10,0xff,0xff,9,8);
__m128i res01_mask = _mm_set_epi8(7,6,0xff,0xff,5,4,0xff,0xff,3,2,0xff,0xff,1,0,0xff,0xff);
__m128i res11_mask = _mm_set_epi8(15,14,0xff,0xff,13,12,0xff,0xff,11,10,0xff,0xff,9,8,0xff,0xff);
for (int i=0;i<long_cb/8;i++) {
in = _mm_load_si128(inPtr);
@ -294,17 +301,17 @@ void map_gen_gamma(map_gen_t * h, int16_t *input, int16_t *app, int16_t *parity,
g1 = _mm_srai_epi16(g1, 1);
g0 = _mm_srai_epi16(g0, 1);
res00 = _mm_shuffle_epi8(g0, res00_mask);
res10 = _mm_shuffle_epi8(g0, res10_mask);
res20 = _mm_shuffle_epi8(g0, res20_mask);
res01 = _mm_shuffle_epi8(g1, res01_mask);
res11 = _mm_shuffle_epi8(g1, res11_mask);
res21 = _mm_shuffle_epi8(g1, res21_mask);
res0 = _mm_or_si128(res00, res01);
res1 = _mm_or_si128(res10, res11);
res2 = _mm_or_si128(res20, res21);
_mm_store_si128(resPtr, res1);
_mm_store_si128(resPtr, res0);
resPtr++;
_mm_store_si128(resPtr, res2);
_mm_store_si128(resPtr, res1);
resPtr++;
}
@ -314,356 +321,177 @@ void map_gen_gamma(map_gen_t * h, int16_t *input, int16_t *app, int16_t *parity,
}
}
/* Inititalizes constituent decoder object */
int map_gen_init(map_gen_t * h, int max_long_cb)
{
bzero(h, sizeof(map_gen_t));
h->alpha = srslte_vec_malloc(sizeof(int16_t) * (max_long_cb + SRSLTE_TCOD_TOTALTAIL + 1) * NUMSTATES);
if (!h->alpha) {
perror("srslte_vec_malloc");
return -1;
}
h->branch = srslte_vec_malloc(sizeof(int16_t) * (max_long_cb + SRSLTE_TCOD_TOTALTAIL + 1) * NUMSTATES);
if (!h->branch) {
perror("srslte_vec_malloc");
return -1;
}
h->max_long_cb = max_long_cb;
return 0;
}
void map_gen_free(map_gen_t * h)
{
if (h->alpha) {
free(h->alpha);
}
if (h->branch) {
free(h->branch);
}
bzero(h, sizeof(map_gen_t));
}
/* Runs one instance of a decoder */
void map_gen_dec(map_gen_t * h, int16_t * input, int16_t *app, int16_t * parity, int16_t * output,
uint32_t long_cb)
{
// Compute branch metrics
map_gen_gamma(h, input, app, parity, long_cb);
// Forward recursion
map_gen_alpha(h, long_cb);
// Backwards recursion + LLR computation
map_gen_beta(h, output, long_cb);
}
/* Initializes the turbo decoder object */
int srslte_tdec_sse_init(srslte_tdec_sse_t * h, uint32_t max_long_cb)
{
int ret = -1;
bzero(h, sizeof(srslte_tdec_sse_t));
uint32_t len = max_long_cb + SRSLTE_TCOD_TOTALTAIL;
h->max_long_cb = max_long_cb;
h->app1 = srslte_vec_malloc(sizeof(int16_t) * len);
if (!h->app1) {
perror("srslte_vec_malloc");
goto clean_and_exit;
}
h->app2 = srslte_vec_malloc(sizeof(int16_t) * len);
if (!h->app2) {
perror("srslte_vec_malloc");
goto clean_and_exit;
}
h->ext1 = srslte_vec_malloc(sizeof(int16_t) * len);
if (!h->ext1) {
perror("srslte_vec_malloc");
goto clean_and_exit;
}
h->ext2 = srslte_vec_malloc(sizeof(int16_t) * len);
if (!h->ext2) {
perror("srslte_vec_malloc");
goto clean_and_exit;
}
h->syst = srslte_vec_malloc(sizeof(int16_t) * len);
if (!h->syst) {
perror("srslte_vec_malloc");
goto clean_and_exit;
}
h->parity0 = srslte_vec_malloc(sizeof(int16_t) * len);
if (!h->parity0) {
perror("srslte_vec_malloc");
goto clean_and_exit;
}
h->parity1 = srslte_vec_malloc(sizeof(int16_t) * len);
if (!h->parity1) {
perror("srslte_vec_malloc");
goto clean_and_exit;
}
if (map_gen_init(&h->dec, h->max_long_cb)) {
goto clean_and_exit;
}
for (int i=0;i<SRSLTE_NOF_TC_CB_SIZES;i++) {
if (srslte_tc_interl_init(&h->interleaver[i], srslte_cbsegm_cbsize(i)) < 0) {
goto clean_and_exit;
}
srslte_tc_interl_LTE_gen(&h->interleaver[i], srslte_cbsegm_cbsize(i));
}
h->current_cbidx = -1;
ret = 0;
clean_and_exit:if (ret == -1) {
srslte_tdec_sse_free(h);
}
return ret;
}
void srslte_tdec_sse_free(srslte_tdec_sse_t * h)
{
if (h->app1) {
free(h->app1);
}
if (h->app2) {
free(h->app2);
}
if (h->ext1) {
free(h->ext1);
}
if (h->ext2) {
free(h->ext2);
}
if (h->syst) {
free(h->syst);
}
if (h->parity0) {
free(h->parity0);
}
if (h->parity1) {
free(h->parity1);
}
map_gen_free(&h->dec);
for (int i=0;i<SRSLTE_NOF_TC_CB_SIZES;i++) {
srslte_tc_interl_free(&h->interleaver[i]);
}
bzero(h, sizeof(srslte_tdec_sse_t));
}
/* Deinterleaves the 3 streams from the input (systematic and 2 parity bits) into
* 3 buffers ready to be used by compute_gamma()
/***********************
*
* This is an attempt to parallelize the horizontal max
* by doing a 8x8 tranpose of the vectors and computing max
* in cascade. However since we need to store 16 registers
* for the positive and negative values the performance is not very good
*/
void deinterleave_input(srslte_tdec_sse_t *h, int16_t *input, uint32_t long_cb) {
uint32_t i;
#ifdef use_beta_transposed_max
static inline __m128i transposed_max(__m128i a, __m128i b, __m128i c, __m128i d,
__m128i e, __m128i f, __m128i g, __m128i h)
{
// Transpose 8 vectors
__m128i t0 = _mm_unpacklo_epi16(a, b);
__m128i t1 = _mm_unpacklo_epi16(c, d);
__m128i t2 = _mm_unpacklo_epi16(e, f);
__m128i t3 = _mm_unpacklo_epi16(g, h);
__m128i t4 = _mm_unpackhi_epi16(a, b);
__m128i t5 = _mm_unpackhi_epi16(c, d);
__m128i t6 = _mm_unpackhi_epi16(e, f);
__m128i t7 = _mm_unpackhi_epi16(g, h);
__m128i s0 = _mm_unpacklo_epi32(t0, t1);
__m128i s1 = _mm_unpackhi_epi32(t0, t1);
__m128i s2 = _mm_unpacklo_epi32(t2, t3);
__m128i s3 = _mm_unpackhi_epi32(t2, t3);
__m128i s4 = _mm_unpacklo_epi32(t4, t5);
__m128i s5 = _mm_unpackhi_epi32(t4, t5);
__m128i s6 = _mm_unpacklo_epi32(t6, t7);
__m128i s7 = _mm_unpackhi_epi32(t6, t7);
__m128i x0 = _mm_unpacklo_epi64(s0, s2);
__m128i x1 = _mm_unpackhi_epi64(s0, s2);
__m128i x2 = _mm_unpacklo_epi64(s1, s3);
__m128i x3 = _mm_unpackhi_epi64(s1, s3);
__m128i x4 = _mm_unpacklo_epi64(s4, s6);
__m128i x5 = _mm_unpackhi_epi64(s4, s6);
__m128i x6 = _mm_unpacklo_epi64(s5, s7);
__m128i x7 = _mm_unpackhi_epi64(s5, s7);
// Cascade max on the transposed vector
__m128i res = _mm_max_epi16(x0,
_mm_max_epi16(x1,
_mm_max_epi16(x2,
_mm_max_epi16(x3,
_mm_max_epi16(x4,
_mm_max_epi16(x5,
_mm_max_epi16(x6,
x7)))))));
return res;
}
void map_sse_beta(map_gen_t * s, int16_t * output, uint32_t long_cb)
{
int k;
uint32_t end = long_cb + 3;
const __m128i *alphaPtr = (const __m128i*) s->alpha;
__m128i *inputPtr = (__m128i*) input;
__m128i in0, in1, in2;
__m128i s0, s1, s2, s;
__m128i p00, p01, p02, p0;
__m128i p10, p11, p12, p1;
__m128i beta_k = _mm_set_epi16(-INF, -INF, -INF, -INF, -INF, -INF, -INF, 0);
__m128i g, alpha_k;
__m128i bn, bn_0, bn_1, bn_2, bn_3, bn_4, bn_5, bn_6, bn_7;
__m128i bp, bp_0, bp_1, bp_2, bp_3, bp_4, bp_5, bp_6, bp_7;
__m128i *sysPtr = (__m128i*) h->syst;
__m128i *pa0Ptr = (__m128i*) h->parity0;
__m128i *pa1Ptr = (__m128i*) h->parity1;
// pick bits 0, 3, 6 from 1st word
__m128i s0_mask = _mm_set_epi8(0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,13,12,7,6,1,0);
// pick bits 1, 4, 7 from 2st word
__m128i s1_mask = _mm_set_epi8(0xff,0xff,0xff,0xff,15,14,9,8,3,2,0xff,0xff,0xff,0xff,0xff,0xff);
// pick bits 2, 5 from 3rd word
__m128i s2_mask = _mm_set_epi8(11,10,5,4,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff);
/* Define the shuffle constant for the positive beta */
__m128i shuf_bp = _mm_set_epi8(
15, 14, // 7
7, 6, // 3
5, 4, // 2
13, 12, // 6
11, 10, // 5
3, 2, // 1
1, 0, // 0
9, 8 // 4
);
// pick bits 1, 4, 7 from 1st word
__m128i p00_mask = _mm_set_epi8(0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,15,14,9,8,3,2);
// pick bits 2, 5, from 2st word
__m128i p01_mask = _mm_set_epi8(0xff,0xff,0xff,0xff,0xff,0xff,11,10,5,4,0xff,0xff,0xff,0xff,0xff,0xff);
// pick bits 0, 3, 6 from 3rd word
__m128i p02_mask = _mm_set_epi8(13,12,7,6,1,0,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff);
/* Define the shuffle constant for the negative beta */
__m128i shuf_bn = _mm_set_epi8(
7, 6, // 3
15, 14, // 7
13, 12, // 6
5, 4, // 2
3, 2, // 1
11, 10, // 5
9, 8, // 4
1, 0 // 0
);
alphaPtr += long_cb-1;
/* Define shuffle for branch costs */
__m128i shuf_g[4];
shuf_g[3] = _mm_set_epi8(3,2,1,0,1,0,3,2,3,2,1,0,1,0,3,2);
shuf_g[2] = _mm_set_epi8(7,6,5,4,5,4,7,6,7,6,5,4,5,4,7,6);
shuf_g[1] = _mm_set_epi8(11,10,9,8,9,8,11,10,11,10,9,8,9,8,11,10);
shuf_g[0] = _mm_set_epi8(15,14,13,12,13,12,15,14,15,14,13,12,13,12,15,14);
__m128i gv;
int16_t *b = &s->branch[2*long_cb-8];
__m128i *gPtr = (__m128i*) b;
/* Define shuffle for beta normalization */
__m128i shuf_norm = _mm_set_epi8(1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0);
// pick bits 2, 5 from 1st word
__m128i p10_mask = _mm_set_epi8(0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,11,10,5,4);
// pick bits 0, 3, 6, from 2st word
__m128i p11_mask = _mm_set_epi8(0xff,0xff,0xff,0xff,0xff,0xff,13,12,7,6,1,0,0xff,0xff,0xff,0xff);
// pick bits 1, 4, 7 from 3rd word
__m128i p12_mask = _mm_set_epi8(15,14,9,8,3,2,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff);
// Split systematic and parity bits
for (i = 0; i < long_cb/8; i++) {
in0 = _mm_load_si128(inputPtr); inputPtr++;
in1 = _mm_load_si128(inputPtr); inputPtr++;
in2 = _mm_load_si128(inputPtr); inputPtr++;
/* This defines a beta computation step:
* Adds and substracts the branch metrics to the previous beta step,
* shuffles the states according to the trellis path and selects maximum state
*/
#define BETA_STEP(g) bp = _mm_add_epi16(beta_k, g);\
bn = _mm_sub_epi16(beta_k, g);\
bp = _mm_shuffle_epi8(bp, shuf_bp);\
bn = _mm_shuffle_epi8(bn, shuf_bn);\
beta_k = _mm_max_epi16(bp, bn);
/* Loads the alpha metrics from memory and adds them to the temporal bn and bp
* metrics.
*/
#define BETA_STEP_CNT(c,d) g = _mm_shuffle_epi8(gv, shuf_g[c]);\
BETA_STEP(g)\
alpha_k = _mm_load_si128(alphaPtr);\
alphaPtr--;\
bp_##d = _mm_add_epi16(bp, alpha_k);\
bn_##d = _mm_add_epi16(bn, alpha_k);\
/* The tail does not require to load alpha or produce outputs. Only update
* beta metrics accordingly */
for (k=end-1; k>=long_cb; k--) {
int16_t g0 = s->branch[2*k];
int16_t g1 = s->branch[2*k+1];
g = _mm_set_epi16(g1, g0, g0, g1, g1, g0, g0, g1);
BETA_STEP(g);
}
/* We inline 2 trelis steps for each normalization */
__m128i norm;
__m128i *outPtr = (__m128i*) &output[long_cb-8];
for (; k >= 0; k-=8) {
gv = _mm_load_si128(gPtr);
gPtr--;
/* Deinterleave Systematic bits */
s0 = _mm_shuffle_epi8(in0, s0_mask);
s1 = _mm_shuffle_epi8(in1, s1_mask);
s2 = _mm_shuffle_epi8(in2, s2_mask);
s = _mm_or_si128(s0, s1);
s = _mm_or_si128(s, s2);
_mm_store_si128(sysPtr, s);
sysPtr++;
/* Deinterleave parity 0 bits */
p00 = _mm_shuffle_epi8(in0, p00_mask);
p01 = _mm_shuffle_epi8(in1, p01_mask);
p02 = _mm_shuffle_epi8(in2, p02_mask);
p0 = _mm_or_si128(p00, p01);
p0 = _mm_or_si128(p0, p02);
BETA_STEP_CNT(0,0);
BETA_STEP_CNT(1,1);
BETA_STEP_CNT(2,2);
BETA_STEP_CNT(3,3);
norm = _mm_shuffle_epi8(beta_k, shuf_norm);
beta_k = _mm_sub_epi16(beta_k, norm);
gv = _mm_load_si128(gPtr);
gPtr--;
BETA_STEP_CNT(0,4);
BETA_STEP_CNT(1,5);
BETA_STEP_CNT(2,6);
BETA_STEP_CNT(3,7);
norm = _mm_shuffle_epi8(beta_k, shuf_norm);
beta_k = _mm_sub_epi16(beta_k, norm);
_mm_store_si128(pa0Ptr, p0);
pa0Ptr++;
/* Deinterleave parity 1 bits */
p10 = _mm_shuffle_epi8(in0, p10_mask);
p11 = _mm_shuffle_epi8(in1, p11_mask);
p12 = _mm_shuffle_epi8(in2, p12_mask);
p1 = _mm_or_si128(p10, p11);
p1 = _mm_or_si128(p1, p12);
_mm_store_si128(pa1Ptr, p1);
pa1Ptr++;
}
for (i = 0; i < 3; i++) {
h->syst[i+long_cb] = input[3*long_cb + 2*i];
h->parity0[i+long_cb] = input[3*long_cb + 2*i + 1];
}
for (i = 0; i < 3; i++) {
h->app2[i+long_cb] = input[3*long_cb + 6 + 2*i];
h->parity1[i+long_cb] = input[3*long_cb + 6 + 2*i + 1];
}
__m128i bn_transp = transposed_max(bn_7, bn_6, bn_5, bn_4, bn_3, bn_2, bn_1, bn_0);
__m128i bp_transp = transposed_max(bp_7, bp_6, bp_5, bp_4, bp_3, bp_2, bp_1, bp_0);
__m128i outval = _mm_sub_epi16(bp_transp,bn_transp);
_mm_store_si128(outPtr, outval);
outPtr--;
}
}
#endif
/* Runs 1 turbo decoder iteration */
void srslte_tdec_sse_iteration(srslte_tdec_sse_t * h, int16_t * input, uint32_t long_cb)
{
if (h->current_cbidx >= 0) {
uint16_t *inter = h->interleaver[h->current_cbidx].forward;
uint16_t *deinter = h->interleaver[h->current_cbidx].reverse;
if (h->n_iter == 0) {
deinterleave_input(h, input, long_cb);
}
// Add apriori information to decoder 1
if (h->n_iter > 0) {
srslte_vec_sub_sss(h->app1, h->ext1, h->app1, long_cb);
}
// Run MAP DEC #1
if (h->n_iter == 0) {
map_gen_dec(&h->dec, h->syst, NULL, h->parity0, h->ext1, long_cb);
} else {
map_gen_dec(&h->dec, h->syst, h->app1, h->parity0, h->ext1, long_cb);
}
// Convert aposteriori information into extrinsic information
if (h->n_iter > 0) {
srslte_vec_sub_sss(h->ext1, h->app1, h->ext1, long_cb);
}
// Interleave extrinsic output of DEC1 to form apriori info for decoder 2
srslte_vec_lut_sss(h->ext1, deinter, h->app2, long_cb);
// Run MAP DEC #2. 2nd decoder uses apriori information as systematic bits
map_gen_dec(&h->dec, h->app2, NULL, h->parity1, h->ext2, long_cb);
// Deinterleaved extrinsic bits become apriori info for decoder 1
srslte_vec_lut_sss(h->ext2, inter, h->app1, long_cb);
h->n_iter++;
} else {
fprintf(stderr, "Error CB index not set (call srslte_tdec_sse_reset() first\n");
}
}
/* Resets the decoder and sets the codeblock length */
int srslte_tdec_sse_reset(srslte_tdec_sse_t * h, uint32_t long_cb)
{
if (long_cb > h->max_long_cb) {
fprintf(stderr, "TDEC was initialized for max_long_cb=%d\n",
h->max_long_cb);
return -1;
}
h->n_iter = 0;
h->current_cbidx = srslte_cbsegm_cbindex(long_cb);
if (h->current_cbidx < 0) {
fprintf(stderr, "Invalid CB length %d\n", long_cb);
return -1;
}
return 0;
}
void srslte_tdec_sse_decision(srslte_tdec_sse_t * h, uint8_t *output, uint32_t long_cb)
{
__m128i zero = _mm_set1_epi16(0);
__m128i lsb_mask = _mm_set1_epi16(1);
__m128i *appPtr = (__m128i*) h->app1;
__m128i *outPtr = (__m128i*) output;
__m128i ap, out, out0, out1;
for (uint32_t i = 0; i < long_cb/16; i++) {
ap = _mm_load_si128(appPtr); appPtr++;
out0 = _mm_and_si128(_mm_cmpgt_epi16(ap, zero), lsb_mask);
ap = _mm_load_si128(appPtr); appPtr++;
out1 = _mm_and_si128(_mm_cmpgt_epi16(ap, zero), lsb_mask);
out = _mm_packs_epi16(out0, out1);
_mm_store_si128(outPtr, out);
outPtr++;
}
if (long_cb%16) {
for (int i=0;i<8;i++) {
output[long_cb-8+i] = h->app1[long_cb-8+i]>0?1:0;
}
}
}
void srslte_tdec_sse_decision_byte(srslte_tdec_sse_t * h, uint8_t *output, uint32_t long_cb)
{
uint8_t mask[8] = {0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1};
// long_cb is always byte aligned
for (uint32_t i = 0; i < long_cb/8; i++) {
uint8_t out0 = h->app1[8*i+0]>0?mask[0]:0;
uint8_t out1 = h->app1[8*i+1]>0?mask[1]:0;
uint8_t out2 = h->app1[8*i+2]>0?mask[2]:0;
uint8_t out3 = h->app1[8*i+3]>0?mask[3]:0;
uint8_t out4 = h->app1[8*i+4]>0?mask[4]:0;
uint8_t out5 = h->app1[8*i+5]>0?mask[5]:0;
uint8_t out6 = h->app1[8*i+6]>0?mask[6]:0;
uint8_t out7 = h->app1[8*i+7]>0?mask[7]:0;
output[i] = out0 | out1 | out2 | out3 | out4 | out5 | out6 | out7;
}
}
/* Runs nof_iterations iterations and decides the output bits */
int srslte_tdec_sse_run_all(srslte_tdec_sse_t * h, int16_t * input, uint8_t *output,
uint32_t nof_iterations, uint32_t long_cb)
{
if (srslte_tdec_sse_reset(h, long_cb)) {
return SRSLTE_ERROR;
}
do {
srslte_tdec_sse_iteration(h, input, long_cb);
} while (h->n_iter < nof_iterations);
srslte_tdec_sse_decision_byte(h, output, long_cb);
return SRSLTE_SUCCESS;
}
#endif

View File

@ -0,0 +1,198 @@
/**
*
* \section COPYRIGHT
*
* Copyright 2013-2015 Software Radio Systems Limited
*
* \section LICENSE
*
* This file is part of the srsLTE library.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <strings.h>
#include <math.h>
#include "srslte/phy/fec/turbodecoder_simd_inter.h"
#include "srslte/phy/utils/vector.h"
#define NCB 8
#define INF 10000
#ifdef LV_HAVE_SSE
#include <smmintrin.h>
void sse_inter_extract_syst1(srslte_tdec_simd_inter_t *h, uint16_t *inter, uint32_t long_cb)
{
__m128i *llr1Ptr = (__m128i*) h->llr1;
__m128i *wPtr = (__m128i*) h->w;
__m128i *syst1Ptr = (__m128i*) h->syst1;
for (int i = 0; i < long_cb; i++) {
__m128i llr1 = _mm_load_si128(&llr1Ptr[inter[i]]);
__m128i w = _mm_load_si128(&wPtr[inter[i]]);
_mm_store_si128(syst1Ptr++, _mm_sub_epi16(llr1, w));
}
}
void sse_inter_update_w(srslte_tdec_simd_inter_t *h, uint16_t *deinter, uint32_t long_cb)
{
__m128i *llr1Ptr = (__m128i*) h->llr1;
__m128i *llr2Ptr = (__m128i*) h->llr2;
__m128i *wPtr = (__m128i*) h->w;
__m128i *syst1Ptr = (__m128i*) h->syst1;
for (int i = 0; i < long_cb; i++) {
__m128i llr1 = _mm_load_si128(llr1Ptr++);
__m128i w = _mm_load_si128(wPtr++);
__m128i llr2 = _mm_load_si128(&llr2Ptr[deinter[i]]);
_mm_store_si128(syst1Ptr++, _mm_add_epi16(w, _mm_sub_epi16(llr2, llr1)));
}
}
/* Computes beta values */
void map_sse_inter_beta(srslte_tdec_simd_inter_t * s, int16_t *input, int16_t *parity, int16_t * output, uint32_t long_cb)
{
__m128i m_b[8], new[8], old[8], max1[8], max0[8];
__m128i x, y, xy;
__m128i m1, m0;
uint32_t end = long_cb + 3;
uint32_t i;
__m128i *inputPtr = (__m128i*) input;
__m128i *parityPtr = (__m128i*) parity;
__m128i *outputPtr = (__m128i*) output;
__m128i *alphaPtr = (__m128i*) s->alpha;
for (int k = end - 1; k >= 0; k--) {
x = _mm_load_si128(inputPtr++);
y = _mm_load_si128(parityPtr++);
xy = _mm_add_epi16(x,y);
m_b[0] = _mm_add_epi16(old[4], xy);
m_b[1] = old[4];
m_b[2] = _mm_add_epi16(old[5], y);
m_b[3] = _mm_add_epi16(old[5], x);
m_b[4] = _mm_add_epi16(old[6], x);
m_b[5] = _mm_add_epi16(old[6], y);
m_b[6] = old[7];
m_b[7] = _mm_add_epi16(old[7], xy);
new[0] = old[0];
new[1] = _mm_add_epi16(old[0], xy);
new[2] = _mm_add_epi16(old[1], x);
new[3] = _mm_add_epi16(old[1], y);
new[4] = _mm_add_epi16(old[2], y);
new[5] = _mm_add_epi16(old[2], x);
new[6] = _mm_add_epi16(old[3], xy);
new[7] = old[3];
for (i = 0; i < 8; i++) {
__m128i alpha = _mm_load_si128(alphaPtr++);
max0[i] = _mm_add_epi16(alpha, m_b[i]);
max1[i] = _mm_add_epi16(alpha, new[i]);
}
m1 = _mm_max_epi16(max1[0], max1[1]);
m0 = _mm_max_epi16(max0[0], max0[1]);
for (i = 2; i < 8; i++) {
m1 = _mm_max_epi16(m1, max1[i]);
m0 = _mm_max_epi16(m0, max0[i]);
}
for (i = 0; i < 8; i++) {
new[i] = _mm_max_epi16(m_b[i], new[i]);
old[i] = new[i];
}
__m128i out = _mm_sub_epi16(m1, m0);
_mm_store_si128(outputPtr++, out);
// normalize
if ((k%4)==0) {
for (int i=1;i<8;i++) {
_mm_sub_epi16(old[i], old[0]);
}
}
}
}
/* Computes alpha metrics */
void map_see_inter_alpha(srslte_tdec_simd_inter_t * s, int16_t *input, int16_t *parity, uint32_t long_cb)
{
__m128i m_b[8], new[8], old[8];
__m128i x, y, xy;
uint32_t k;
__m128i *inputPtr = (__m128i*) input;
__m128i *parityPtr = (__m128i*) parity;
__m128i *alphaPtr = (__m128i*) s->alpha;
old[0] = _mm_set1_epi16(0);
for (int i = 1; i < 8; i++) {
old[i] = _mm_set1_epi16(-INF);
}
for (k = 0; k < long_cb; k++) {
x = _mm_load_si128(inputPtr++);
y = _mm_load_si128(parityPtr++);
xy = _mm_add_epi16(x,y);
m_b[0] = old[0];
m_b[1] = _mm_add_epi16(old[3], y);
m_b[2] = _mm_add_epi16(old[4], y);
m_b[3] = old[7];
m_b[4] = old[1];
m_b[5] = _mm_add_epi16(old[2], y);
m_b[6] = _mm_add_epi16(old[5], y);
m_b[7] = old[6];
new[0] = _mm_add_epi16(old[1], xy);
new[1] = _mm_add_epi16(old[2], x);
new[2] = _mm_add_epi16(old[5], x);
new[3] = _mm_add_epi16(old[6], xy);
new[4] = _mm_add_epi16(old[0], xy);
new[5] = _mm_add_epi16(old[3], x);
new[6] = _mm_add_epi16(old[4], x);
new[7] = _mm_add_epi16(old[7], xy);
for (int i = 0; i < 8; i++) {
new[i] = _mm_max_epi16(m_b[i], new[i]);
old[i] = new[i];
_mm_store_si128(alphaPtr++, old[i]);
}
// normalize
if ((k%4)==0) {
for (int i=1;i<8;i++) {
_mm_sub_epi16(old[i], old[0]);
}
}
}
}
#endif

View File

@ -311,8 +311,124 @@ static int encode_tb(srslte_sch_t *q,
return encode_tb_off(q, soft_buffer, cb_segm, Qm, rv, nof_e_bits, data, e_bits, 0);
}
bool decode_tb_cb(srslte_sch_t *q,
srslte_softbuffer_rx_t *softbuffer, srslte_cbsegm_t *cb_segm,
uint32_t Qm, uint32_t rv, uint32_t nof_e_bits,
int16_t *e_bits, uint8_t *data,
uint32_t cb_size_group, uint8_t parity[3])
{
bool cb_map[SRSLTE_MAX_CODEBLOCKS];
bzero(cb_map, sizeof(bool)*SRSLTE_MAX_CODEBLOCKS);
uint32_t cb_idx[SRSLTE_TDEC_NPAR];
int16_t *decoder_input[SRSLTE_TDEC_NPAR];
uint32_t nof_cb = cb_size_group?cb_segm->C2:cb_segm->C1;
uint32_t first_cb = cb_size_group?cb_segm->C1:0;
uint32_t cb_len = cb_size_group?cb_segm->K2:cb_segm->K1;
uint32_t cb_len_idx = cb_size_group?cb_segm->K2_idx:cb_segm->K1_idx;
uint32_t rlen = cb_segm->C==1?cb_len:(cb_len-24);
uint32_t Gp = nof_e_bits / Qm;
uint32_t gamma = cb_segm->C>0?Gp%cb_segm->C:Gp;
uint32_t n_e = Qm * (Gp/cb_segm->C);
if (nof_cb > SRSLTE_MAX_CODEBLOCKS) {
fprintf(stderr, "Error SRSLTE_MAX_CODEBLOCKS=%d\n", SRSLTE_MAX_CODEBLOCKS);
return false;
}
for (int i=0;i<SRSLTE_TDEC_NPAR;i++) {
cb_idx[i] = i+first_cb;
}
srslte_tdec_reset(&q->decoder, cb_len);
uint32_t remaining_cb = nof_cb;
while(remaining_cb>0) {
uint32_t npar = SRSLTE_MIN(remaining_cb, SRSLTE_TDEC_NPAR);
// Unratematch the codeblocks left to decode
for (int i=0;i<npar;i++) {
// Find a not processed CB
cb_idx[i]=first_cb;
while(cb_idx[i]<first_cb+nof_cb && cb_map[cb_idx[i]]) {
cb_idx[i]++;
}
cb_map[cb_idx[i]] = true;
uint32_t rp = cb_idx[i]*n_e;
uint32_t n_e2 = n_e;
if (cb_idx[i] > cb_segm->C - gamma) {
n_e2 = n_e+Qm;
rp = (cb_segm->C - gamma)*n_e + (cb_idx[i]-(cb_segm->C - gamma))*n_e2;
}
INFO("CB %d: rp=%d, n_e=%d, i=%d\n", cb_idx[i], rp, n_e2, i);
if (srslte_rm_turbo_rx_lut(&e_bits[rp], softbuffer->buffer_f[cb_idx[i]], n_e2, cb_len_idx, rv)) {
fprintf(stderr, "Error in rate matching\n");
return SRSLTE_ERROR;
}
decoder_input[i] = softbuffer->buffer_f[cb_idx[i]];
}
// Run 1 iteration for up to TDEC_NPAR codeblocks
if (SRSLTE_TDEC_NPAR > 1) {
INFO("Processing %d CBs, index %d,%d\n", npar, cb_idx[0], cb_idx[1]);
}
srslte_tdec_iteration_par(&q->decoder, decoder_input, npar, cb_len);
// Decide output bits and compute CRC
for (int i=0;i<npar;i++) {
srslte_tdec_decision_byte_par_cb(&q->decoder, q->cb_in, i, cb_len);
uint32_t len_crc;
srslte_crc_t *crc_ptr;
if (cb_segm->C > 1) {
len_crc = cb_len;
crc_ptr = &q->crc_cb;
} else {
len_crc = cb_segm->tbs+24;
crc_ptr = &q->crc_tb;
}
// CRC is OK
if (!srslte_crc_checksum_byte(crc_ptr, q->cb_in, len_crc)) {
uint32_t wp = cb_idx[i]*rlen;
// If it's not the last CB, copy data to another buffer and remove CRC */
if (cb_idx[i] < cb_segm->C - 1) {
memcpy(&data[wp/8], q->cb_in, rlen/8 * sizeof(uint8_t));
// If it's the last CB Append Transport Block parity bits to the last CB
} else {
memcpy(&data[wp/8], q->cb_in, (rlen - 24)/8 * sizeof(uint8_t));
memcpy(parity, &q->cb_in[(rlen - 24)/8], 3 * sizeof(uint8_t));
}
// Reset number of iterations for that CB in the decoder
srslte_tdec_reset_cb(&q->decoder, i);
remaining_cb--;
// CRC is error and exceeded maximum iterations for this CB.
// Early stop the whole transport block.
} else if (srslte_tdec_get_nof_iterations_cb(&q->decoder, i) >= q->max_iterations) {
INFO("CB %d: Error. TB is erroneous.\n", cb_idx[i]);
return false;
}
}
}
return true;
}
/**
* Decode a transport block according to 36.212 5.3.2
@ -332,10 +448,6 @@ static int decode_tb(srslte_sch_t *q,
uint32_t Qm, uint32_t rv, uint32_t nof_e_bits,
int16_t *e_bits, uint8_t *data)
{
uint8_t parity[3] = {0, 0, 0};
uint32_t par_rx, par_tx;
uint32_t i;
uint32_t cb_len, rp, wp, rlen, n_e;
if (q != NULL &&
data != NULL &&
@ -343,17 +455,11 @@ static int decode_tb(srslte_sch_t *q,
e_bits != NULL &&
cb_segm != NULL)
{
if (cb_segm->tbs == 0 || cb_segm->C == 0) {
return SRSLTE_SUCCESS;
}
rp = 0;
rp = 0;
wp = 0;
uint32_t Gp = nof_e_bits / Qm;
uint32_t gamma=Gp;
if (cb_segm->F) {
fprintf(stderr, "Error filler bits are not supported. Use standard TBS\n");
return SRSLTE_ERROR;
@ -363,128 +469,41 @@ static int decode_tb(srslte_sch_t *q,
fprintf(stderr, "Error number of CB (%d) exceeds soft buffer size (%d CBs)\n", cb_segm->C, softbuffer->max_cb);
return SRSLTE_ERROR;
}
if (cb_segm->C>0) {
gamma = Gp%cb_segm->C;
}
bool early_stop = true;
for (i = 0; i < cb_segm->C && early_stop; i++) {
/* Get read/write lengths */
uint32_t cblen_idx;
if (i < cb_segm->C2) {
cb_len = cb_segm->K2;
cblen_idx = cb_segm->K2_idx;
} else {
cb_len = cb_segm->K1;
cblen_idx = cb_segm->K1_idx;
}
if (cb_segm->C == 1) {
rlen = cb_len;
} else {
rlen = cb_len - 24;
}
if (i <= cb_segm->C - gamma - 1) {
n_e = Qm * (Gp/cb_segm->C);
} else {
n_e = Qm * ((uint32_t) ceilf((float) Gp/cb_segm->C));
}
/* Rate Unmatching */
if (srslte_rm_turbo_rx_lut(&e_bits[rp], softbuffer->buffer_f[i], n_e, cblen_idx, rv)) {
fprintf(stderr, "Error in rate matching\n");
return SRSLTE_ERROR;
}
if (SRSLTE_VERBOSE_ISDEBUG()) {
char tmpstr[64];
snprintf(tmpstr,64,"rmout_%d.dat",i);
DEBUG("SAVED FILE %s: Encoded turbo code block %d\n", tmpstr, i);
srslte_vec_save_file(tmpstr, softbuffer->buffer_f[i], (3*cb_len+12)*sizeof(int16_t));
}
/* Turbo Decoding with CRC-based early stopping */
q->nof_iterations = 0;
uint32_t len_crc;
srslte_crc_t *crc_ptr;
early_stop = false;
srslte_tdec_reset(&q->decoder, cb_len);
do {
srslte_tdec_iteration(&q->decoder, softbuffer->buffer_f[i], cb_len);
q->nof_iterations++;
if (cb_segm->C > 1) {
len_crc = cb_len;
crc_ptr = &q->crc_cb;
} else {
len_crc = cb_segm->tbs+24;
crc_ptr = &q->crc_tb;
}
srslte_tdec_decision_byte(&q->decoder, q->cb_in, cb_len);
/* Check Codeblock CRC and stop early if correct */
if (!srslte_crc_checksum_byte(crc_ptr, q->cb_in, len_crc)) {
early_stop = true;
}
} while (q->nof_iterations < q->max_iterations && !early_stop);
q->average_nof_iterations = SRSLTE_VEC_EMA((float) q->nof_iterations, q->average_nof_iterations, 0.2);
INFO("CB#%d: cb_len: %d, rlen: %d, wp: %d, rp: %d, E: %d, n_iters=%d\n", i,
cb_len, rlen, wp, rp, n_e, q->nof_iterations);
// If CB CRC is not correct, early_stop will be false and wont continue with rest of CBs
/* Copy data to another buffer, removing the Codeblock CRC */
if (i < cb_segm->C - 1) {
memcpy(&data[wp/8], q->cb_in, rlen/8 * sizeof(uint8_t));
} else {
/* Append Transport Block parity bits to the last CB */
memcpy(&data[wp/8], q->cb_in, (rlen - 24)/8 * sizeof(uint8_t));
memcpy(parity, &q->cb_in[(rlen - 24)/8], 3 * sizeof(uint8_t));
}
if (SRSLTE_VERBOSE_ISDEBUG()) {
early_stop = true;
}
/* Set read/write pointers */
wp += rlen;
rp += n_e;
uint8_t parity[3] = {0, 0, 0};
bool crc_ok = true;
uint32_t nof_cb_groups = cb_segm->C2>0?2:1;
// Process Codeblocks in groups of equal CB size to parallelize according to SRSLTE_TDEC_NPAR
for (uint32_t i=0;i<nof_cb_groups && crc_ok;i++) {
crc_ok = decode_tb_cb(q, softbuffer, cb_segm, Qm, rv, nof_e_bits, e_bits, data, i, parity);
}
if (!early_stop) {
INFO("CB %d failed. TB is erroneous.\n",i-1);
return SRSLTE_ERROR;
} else {
INFO("END CB#%d: wp: %d, rp: %d\n", i, wp, rp);
if (crc_ok) {
uint32_t par_rx = 0, par_tx = 0;
// Compute transport block CRC
par_rx = srslte_crc_checksum_byte(&q->crc_tb, data, cb_segm->tbs);
// check parity bits
par_tx = ((uint32_t) parity[0])<<16 | ((uint32_t) parity[1])<<8 | ((uint32_t) parity[2]);
if (!par_rx) {
INFO("Warning: Received all-zero transport block\n\n", 0);
INFO("Warning: Received all-zero transport block\n\n",0);
}
if (par_rx == par_tx) {
INFO("TB decoded OK\n",i);
INFO("TB decoded OK\n",0);
return SRSLTE_SUCCESS;
} else {
INFO("Error in TB parity: par_tx=0x%x, par_rx=0x%x\n", par_tx, par_rx);
return SRSLTE_ERROR;
}
}
} else {
return SRSLTE_ERROR;
}
} else {
return SRSLTE_ERROR_INVALID_INPUTS;
}