/** * * \section COPYRIGHT * * Copyright 2013-2014 The libLTE Developers. See the * COPYRIGHT file at the top-level directory of this distribution. * * \section LICENSE * * This file is part of the libLTE library. * * libLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * libLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * A copy of the GNU Lesser General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include #include #include #include #include #include "liblte/rrc/rrc.h" #include "liblte/phy/phy.h" #include "liblte/cuhd/cuhd.h" #include "cuhd_utils.h" #include "liblte/graphics/plot/plot_waterfall.h" #define STDOUT_COMPACT #ifndef DISABLE_GRAPHICS void init_plots(lte_cell_t cell); void do_plots(ue_dl_t *q, uint32_t sf_idx, ue_sync_t *qs); #endif #define B210_DEFAULT_GAIN 40.0 #define B210_DEFAULT_GAIN_CORREC 110.0 // Gain of the Rx chain when the gain is set to 40 float gain_offset = B210_DEFAULT_GAIN_CORREC; cell_search_cfg_t cell_detect_config = { 5000, 100, // nof_frames_total 16.0 // threshold }; /********************************************************************** * Program arguments processing ***********************************************************************/ typedef struct { int nof_subframes; bool disable_plots; int force_N_id_2; uint16_t rnti; char *uhd_args; float uhd_freq; float uhd_gain; int net_port; char *net_address; int net_port_signal; char *net_address_signal; }prog_args_t; void args_default(prog_args_t *args) { args->nof_subframes = -1; args->rnti = SIRNTI; args->force_N_id_2 = -1; // Pick the best args->uhd_args = ""; args->uhd_freq = -1.0; args->uhd_gain = 60.0; args->net_port = -1; args->net_address = "127.0.0.1"; args->net_port_signal = -1; args->net_address_signal = "127.0.0.1"; } void usage(prog_args_t *args, char *prog) { printf("Usage: %s [agldnruv] -f rx_frequency (in Hz)\n", prog); printf("\t-a UHD args [Default %s]\n", args->uhd_args); printf("\t-g UHD RX gain [Default %.2f dB]\n", args->uhd_gain); printf("\t-r RNTI [Default 0x%x]\n",args->rnti); printf("\t-l Force N_id_2 [Default best]\n"); #ifndef DISABLE_GRAPHICS printf("\t-d disable plots [Default enabled]\n"); #else printf("\t plots are disabled. Graphics library not available\n"); #endif printf("\t-n nof_subframes [Default %d]\n", args->nof_subframes); printf("\t-s remote UDP port to send input signal (-1 does nothing with it) [Default %d]\n", args->net_port_signal); printf("\t-S remote UDP address to send input signal [Default %s]\n", args->net_address_signal); printf("\t-u remote UDP port to send data (-1 does nothing with it) [Default %d]\n", args->net_port); printf("\t-U remote UDP address to send data [Default %s]\n", args->net_address); printf("\t-v [set verbose to debug, default none]\n"); } void parse_args(prog_args_t *args, int argc, char **argv) { int opt; args_default(args); while ((opt = getopt(argc, argv, "agldnvrfuUsS")) != -1) { switch (opt) { case 'a': args->uhd_args = argv[optind]; break; case 'g': args->uhd_gain = atof(argv[optind]); break; case 'f': args->uhd_freq = atof(argv[optind]); break; case 'n': args->nof_subframes = atoi(argv[optind]); break; case 'r': args->rnti = atoi(argv[optind]); break; case 'l': args->force_N_id_2 = atoi(argv[optind]); break; case 'u': args->net_port = atoi(argv[optind]); break; case 'U': args->net_address = argv[optind]; break; case 's': args->net_port_signal = atoi(argv[optind]); break; case 'S': args->net_address_signal = argv[optind]; break; case 'd': args->disable_plots = true; break; case 'v': verbose++; break; default: usage(args, argv[0]); exit(-1); } } if (args->uhd_freq < 0) { usage(args, argv[0]); exit(-1); } } /**********************************************************************/ /* TODO: Do something with the output data */ uint8_t data[10000], data_packed[10000]; bool go_exit = false; void sig_int_handler(int signo) { if (signo == SIGINT) { go_exit = true; } } int cuhd_recv_wrapper(void *h, void *data, uint32_t nsamples) { DEBUG(" ---- Receive %d samples ---- \n", nsamples); return cuhd_recv(h, data, nsamples, 1); } extern float mean_exec_time; enum receiver_state { DECODE_MIB, DECODE_PDSCH} state; int main(int argc, char **argv) { int ret; cf_t *sf_buffer; prog_args_t prog_args; lte_cell_t cell; int64_t sf_cnt; ue_sync_t ue_sync; ue_mib_t ue_mib; void *uhd; ue_dl_t ue_dl; uint32_t nof_trials = 0; uint32_t sfn = 0; // system frame number int n; uint8_t bch_payload[BCH_PAYLOAD_LEN], bch_payload_unpacked[BCH_PAYLOAD_LEN]; uint32_t sfn_offset; netsink_t net_sink, net_sink_signal; parse_args(&prog_args, argc, argv); if (prog_args.net_port > 0) { if (netsink_init(&net_sink, prog_args.net_address, prog_args.net_port, NETSINK_TCP)) { fprintf(stderr, "Error initiating UDP socket to %s:%d\n", prog_args.net_address, prog_args.net_port); exit(-1); } } if (prog_args.net_port_signal > 0) { if (netsink_init(&net_sink_signal, prog_args.net_address_signal, prog_args.net_port_signal, NETSINK_UDP)) { fprintf(stderr, "Error initiating UDP socket to %s:%d\n", prog_args.net_address_signal, prog_args.net_port_signal); exit(-1); } } printf("Opening UHD device...\n"); if (cuhd_open(prog_args.uhd_args, &uhd)) { fprintf(stderr, "Error opening uhd\n"); exit(-1); } /* Set receiver gain */ cuhd_set_rx_gain(uhd, prog_args.uhd_gain); /* set receiver frequency */ cuhd_set_rx_freq(uhd, (double) prog_args.uhd_freq); cuhd_rx_wait_lo_locked(uhd); printf("Tunning receiver to %.3f MHz\n", (double ) prog_args.uhd_freq/1000000); ret = cuhd_search_and_decode_mib(uhd, &cell_detect_config, prog_args.force_N_id_2, &cell); if (ret < 0) { fprintf(stderr, "Error searching for cell\n"); exit(-1); } else if (ret == 0) { printf("Cell not found\n"); exit(0); } /* set sampling frequency */ int srate = lte_sampling_freq_hz(cell.nof_prb); if (srate != -1) { cuhd_set_rx_srate(uhd, (double) srate); } else { fprintf(stderr, "Invalid number of PRB %d\n", cell.nof_prb); return LIBLTE_ERROR; } INFO("Stopping UHD and flushing buffer...\r",0); cuhd_stop_rx_stream(uhd); cuhd_flush_buffer(uhd); if (ue_sync_init(&ue_sync, cell, cuhd_recv_wrapper, uhd)) { fprintf(stderr, "Error initiating ue_sync\n"); exit(-1); } if (ue_dl_init(&ue_dl, cell, prog_args.rnti==SIRNTI?1:prog_args.rnti)) { // This is the User RNTI fprintf(stderr, "Error initiating UE downlink processing module\n"); exit(-1); } if (ue_mib_init(&ue_mib, cell)) { fprintf(stderr, "Error initaiting UE MIB decoder\n"); exit(-1); } /* Configure downlink receiver for the SI-RNTI since will be the only one we'll use */ ue_dl_set_rnti(&ue_dl, prog_args.rnti); /* Initialize subframe counter */ sf_cnt = 0; // Register Ctrl+C handler signal(SIGINT, sig_int_handler); #ifndef DISABLE_GRAPHICS if (!prog_args.disable_plots) { init_plots(cell); } #endif cuhd_start_rx_stream(uhd); // Variables for measurements uint32_t nframes=0; float rsrp=0.0, rsrq=0.0, snr=0.0; bool decode_pdsch; /* Main loop */ while (!go_exit && (sf_cnt < prog_args.nof_subframes || prog_args.nof_subframes == -1)) { ret = ue_sync_get_buffer(&ue_sync, &sf_buffer); if (ret < 0) { fprintf(stderr, "Error calling ue_sync_work()\n"); } if (prog_args.net_port_signal > 0) { if (netsink_write(&net_sink_signal, sf_buffer, ue_sync_sf_len(&ue_sync)) < 0) { fprintf(stderr, "Error sending data through UDP socket\n"); perror("write"); } } /* ue_sync_get_buffer returns 1 if successfully read 1 aligned subframe */ if (ret == 1) { switch (state) { case DECODE_MIB: if (ue_sync_get_sfidx(&ue_sync) == 0) { pbch_decode_reset(&ue_mib.pbch); n = ue_mib_decode(&ue_mib, sf_buffer, bch_payload_unpacked, NULL, &sfn_offset); if (n < 0) { fprintf(stderr, "Error decoding UE MIB\n"); exit(-1); } else if (n == MIB_FOUND) { bit_unpack_vector(bch_payload_unpacked, bch_payload, BCH_PAYLOAD_LEN); bcch_bch_unpack(bch_payload, BCH_PAYLOAD_LEN, &cell, &sfn); printf("Decoded MIB. SFN: %d, offset: %d\n", sfn, sfn_offset); sfn = (sfn + sfn_offset)%1024; state = DECODE_PDSCH; } } break; case DECODE_PDSCH: if (prog_args.rnti != SIRNTI) { decode_pdsch = true; } else { /* We are looking for SIB1 Blocks, search only in appropiate places */ if ((ue_sync_get_sfidx(&ue_sync) == 5 && (sfn%2)==0)) { decode_pdsch = true; } else { decode_pdsch = false; } } if (decode_pdsch) { if (prog_args.rnti != SIRNTI) { n = ue_dl_decode(&ue_dl, sf_buffer, data_packed, ue_sync_get_sfidx(&ue_sync)); } else { n = ue_dl_decode_sib(&ue_dl, sf_buffer, data_packed, ue_sync_get_sfidx(&ue_sync), ((int) ceilf((float)3*(((sfn)/2)%4)/2))%4); } if (n < 0) { fprintf(stderr, "Error decoding UE DL\n");fflush(stdout); } else if (n > 0) { /* Send data if socket active */ if (prog_args.net_port > 0) { bit_unpack_vector(data_packed, data, n); if (netsink_write(&net_sink, data, 1+(n-1)/8) < 0) { fprintf(stderr, "Error sending data through UDP socket\n"); } } } nof_trials++; rsrq = VEC_EMA(chest_dl_get_rsrq(&ue_dl.chest), rsrq, 0.05); rsrp = VEC_EMA(chest_dl_get_rsrp(&ue_dl.chest), rsrp, 0.05); snr = VEC_EMA(chest_dl_get_snr(&ue_dl.chest), snr, 0.05); nframes++; if (isnan(rsrq)) { rsrq = 0; } } // Plot and Printf if (ue_sync_get_sfidx(&ue_sync) == 5) { #ifdef STDOUT_COMPACT printf("PDCCH-Miss: %5.2f%%, PDSCH-BLER: %5.2f%% (%d blocks)\r", 100*(1-(float) ue_dl.nof_pdcch_detected/nof_trials), (float) 100*ue_dl.pkt_errors/ue_dl.pkts_total,nof_trials, ue_dl.pkts_total); #else printf("CFO: %+8.4f KHz, SFO: %+8.4f Khz, " "RSRP: %+5.1f dBm, RSRQ: %5.1f dB, SNR: %4.1f dB, " "PDCCH-Miss: %5.2f%%, PDSCH-BLER: %5.2f%% (%d blocks)\r", ue_sync_get_cfo(&ue_sync)/1000, ue_sync_get_sfo(&ue_sync)/1000, 10*log10(rsrp*1000)-gain_offset, 10*log10(rsrq), 10*log10(snr), 100*(1-(float) ue_dl.nof_pdcch_detected/nof_trials), (float) 100*ue_dl.pkt_errors/ue_dl.pkts_total,nof_trials, ue_dl.pkts_total); #endif } break; } if (ue_sync_get_sfidx(&ue_sync) == 9) { sfn++; if (sfn == 1024) { sfn = 0; } } #ifndef DISABLE_GRAPHICS if (!prog_args.disable_plots) { do_plots(&ue_dl, ue_sync_get_sfidx(&ue_sync), &ue_sync); } #endif } else if (ret == 0) { printf("Finding PSS... Peak: %8.1f, FrameCnt: %d, State: %d\r", sync_get_peak_value(&ue_sync.sfind), ue_sync.frame_total_cnt, ue_sync.state); } sf_cnt++; } // Main loop ue_dl_free(&ue_dl); ue_mib_free(&ue_mib); ue_sync_free(&ue_sync); cuhd_close(uhd); printf("\nBye\n"); exit(0); } /********************************************************************** * Plotting Functions ***********************************************************************/ #ifndef DISABLE_GRAPHICS #include "liblte/graphics/plot.h" plot_waterfall_t poutfft; plot_real_t p_sync, pce; plot_scatter_t pscatequal, pscatequal_pdcch; float tmp_plot[SLOT_LEN_RE(MAX_PRB, CPNORM)]; float tmp_plot2[SLOT_LEN_RE(MAX_PRB, CPNORM)]; float tmp_plot3[SLOT_LEN_RE(MAX_PRB, CPNORM)]; void init_plots(lte_cell_t cell) { plot_init(); plot_waterfall_init(&poutfft, RE_X_RB * cell.nof_prb, 5000); plot_waterfall_setTitle(&poutfft, "Output FFT - Magnitude"); plot_waterfall_setPlotYAxisScale(&poutfft, -40, 40); plot_real_init(&pce); plot_real_setTitle(&pce, "Channel Response - Magnitude"); plot_real_setLabels(&pce, "Index", "dB"); plot_real_setYAxisScale(&pce, -40, 40); plot_real_init(&p_sync); plot_real_setTitle(&p_sync, "PSS Cross-Corr abs value"); plot_real_setYAxisScale(&p_sync, 0, 1); plot_scatter_init(&pscatequal); plot_scatter_setTitle(&pscatequal, "PDSCH - Equalized Symbols"); plot_scatter_setXAxisScale(&pscatequal, -4, 4); plot_scatter_setYAxisScale(&pscatequal, -4, 4); plot_scatter_init(&pscatequal_pdcch); plot_scatter_setTitle(&pscatequal_pdcch, "PDCCH - Equalized Symbols"); plot_scatter_setXAxisScale(&pscatequal_pdcch, -4, 4); plot_scatter_setYAxisScale(&pscatequal_pdcch, -4, 4); } void do_plots(ue_dl_t *q, uint32_t sf_idx, ue_sync_t *qs) { int i; uint32_t nof_re = SF_LEN_RE(q->cell.nof_prb, q->cell.cp); uint32_t nof_symbols = q->harq_process[0].prb_alloc.re_sf[sf_idx]; for (i = 0; i < nof_re; i++) { tmp_plot[i] = 20 * log10f(cabsf(q->sf_symbols[i])); if (isinf(tmp_plot[i])) { tmp_plot[i] = -80; } } for (i = 0; i < REFSIGNAL_NUM_SF(q->cell.nof_prb,0); i++) { tmp_plot2[i] = 20 * log10f(cabsf(q->chest.pilot_estimates_average[0][i])); if (isinf(tmp_plot2[i])) { tmp_plot2[i] = -80; } } for (i=0;icell.cp);i++) { plot_waterfall_appendNewData(&poutfft, &tmp_plot[i*RE_X_RB*q->cell.nof_prb], RE_X_RB*q->cell.nof_prb); } plot_real_setNewData(&pce, tmp_plot2, REFSIGNAL_NUM_SF(q->cell.nof_prb,0)); int max = vec_max_fi(qs->strack.pss.conv_output_avg, qs->strack.pss.frame_size+qs->strack.pss.fft_size-1); vec_sc_prod_fff(qs->strack.pss.conv_output_avg, 1/qs->strack.pss.conv_output_avg[max], tmp_plot2, qs->strack.pss.frame_size+qs->strack.pss.fft_size-1); plot_real_setNewData(&p_sync, tmp_plot2, qs->strack.pss.frame_size); plot_scatter_setNewData(&pscatequal, q->pdsch.pdsch_d, nof_symbols); plot_scatter_setNewData(&pscatequal_pdcch, q->pdcch.pdcch_d, 36*q->pdcch.nof_cce); } #endif