/** * * \section COPYRIGHT * * Copyright 2013-2021 Software Radio Systems Limited * * By using this file, you agree to the terms and conditions set * forth in the LICENSE file which can be found at the top level of * the distribution. * */ #include "sched_common_test_suite.h" #include "srsran/common/test_common.h" #include using srsran::tti_point; namespace srsenb { int test_pusch_collisions(const sf_output_res_t& sf_out, uint32_t enb_cc_idx, const prbmask_t* expected_ul_mask) { auto& cell_params = sf_out.cc_params[enb_cc_idx]; auto& ul_result = sf_out.ul_cc_result[enb_cc_idx]; uint32_t nof_prb = cell_params.nof_prb(); prbmask_t ul_allocs(nof_prb); auto try_ul_fill = [&](prb_interval alloc, const char* ch_str, bool strict = true) { CONDERROR(alloc.stop() > nof_prb, "Allocated RBs %s out-of-bounds", fmt::format("{}", alloc).c_str()); CONDERROR(alloc.empty(), "Allocations must have at least one PRB"); CONDERROR(strict and ul_allocs.any(alloc.start(), alloc.stop()), "Collision Detected of %s alloc=%s and cumulative_mask=0x%s", ch_str, fmt::format("{}", alloc).c_str(), fmt::format("{:x}", ul_allocs).c_str()); ul_allocs.fill(alloc.start(), alloc.stop(), true); return SRSRAN_SUCCESS; }; /* TEST: Check if there is space for PRACH */ bool is_prach_tti_tx_ul = srsran_prach_in_window_config_fdd(cell_params.cfg.prach_config, to_tx_ul(sf_out.tti_rx).to_uint(), -1); if (is_prach_tti_tx_ul) { try_ul_fill({cell_params.cfg.prach_freq_offset, cell_params.cfg.prach_freq_offset + 6}, "PRACH"); } /* TEST: check collisions in PUCCH */ bool strict = nof_prb != 6 or (not is_prach_tti_tx_ul); // and not tti_data.ul_pending_msg3_present); uint32_t pucch_nrb = (cell_params.cfg.nrb_pucch > 0) ? (uint32_t)cell_params.cfg.nrb_pucch : 0; srsran_pucch_cfg_t pucch_cfg = cell_params.pucch_cfg_common; pucch_cfg.n_pucch = cell_params.nof_cce_table[SRSRAN_NOF_CFI - 1] - 1 + cell_params.cfg.n1pucch_an; pucch_nrb = std::max(pucch_nrb, srsran_pucch_m(&pucch_cfg, cell_params.cfg.cell.cp) / 2 + 1); try_ul_fill({0, pucch_nrb}, "PUCCH", strict); try_ul_fill({cell_params.cfg.cell.nof_prb - pucch_nrb, (uint32_t)cell_params.cfg.cell.nof_prb}, "PUCCH", strict); /* TEST: check collisions in the UL PUSCH */ for (uint32_t i = 0; i < ul_result.pusch.size(); ++i) { uint32_t L, RBstart; srsran_ra_type2_from_riv(ul_result.pusch[i].dci.type2_alloc.riv, &L, &RBstart, nof_prb, nof_prb); strict = ul_result.pusch[i].needs_pdcch or nof_prb != 6; // Msg3 may collide with PUCCH at PRB==6 try_ul_fill({RBstart, RBstart + L}, "PUSCH", strict); } CONDERROR(expected_ul_mask != nullptr and *expected_ul_mask != ul_allocs, "The derived UL PRB mask %s does not match the expected one %s", fmt::format("{}", ul_allocs).c_str(), fmt::format("{}", *expected_ul_mask).c_str()); return SRSRAN_SUCCESS; } int extract_dl_prbmask(const srsran_cell_t& cell, const srsran_dci_dl_t& dci, srsran::bounded_bitset<100, true>& alloc_mask) { srsran_pdsch_grant_t grant; srsran_dl_sf_cfg_t dl_sf = {}; alloc_mask.resize(cell.nof_prb); alloc_mask.reset(); CONDERROR(srsran_ra_dl_dci_to_grant(&cell, &dl_sf, SRSRAN_TM1, false, &dci, &grant) == SRSRAN_ERROR, "Failed to decode PDSCH grant"); for (uint32_t j = 0; j < alloc_mask.size(); ++j) { if (grant.prb_idx[0][j]) { alloc_mask.set(j); } } return SRSRAN_SUCCESS; } int test_pdsch_collisions(const sf_output_res_t& sf_out, uint32_t enb_cc_idx, const rbgmask_t* expected_rbgmask) { auto& cell_params = sf_out.cc_params[enb_cc_idx]; auto& dl_result = sf_out.dl_cc_result[enb_cc_idx]; srsran::bounded_bitset<100, true> dl_allocs(cell_params.nof_prb()), alloc_mask(cell_params.nof_prb()); rbgmask_t rbgmask{cell_params.nof_rbgs}; auto try_dl_mask_fill = [&](const srsran_dci_dl_t& dci, const char* channel) { if (extract_dl_prbmask(cell_params.cfg.cell, dci, alloc_mask) != SRSRAN_SUCCESS) { return SRSRAN_ERROR; } CONDERROR(alloc_mask.none(), "DL allocation must occupy at least one RBG."); CONDERROR((dl_allocs & alloc_mask).any(), "Detected collision in the DL %s allocation (%s intersects %s)", channel, fmt::format("{}", dl_allocs).c_str(), fmt::format("{}", alloc_mask).c_str()); dl_allocs |= alloc_mask; return SRSRAN_SUCCESS; }; // Decode BC allocations, check collisions, and fill cumulative mask for (uint32_t i = 0; i < dl_result.bc.size(); ++i) { TESTASSERT(try_dl_mask_fill(dl_result.bc[i].dci, "BC") == SRSRAN_SUCCESS); } // Decode RAR allocations, check collisions, and fill cumulative mask for (uint32_t i = 0; i < dl_result.rar.size(); ++i) { TESTASSERT(try_dl_mask_fill(dl_result.rar[i].dci, "RAR") == SRSRAN_SUCCESS); } // forbid Data in DL if its ACKs conflict with PRACH for PRB==6 if (cell_params.nof_prb() == 6) { if (srsran_prach_in_window_config_fdd(cell_params.cfg.prach_config, to_tx_dl_ack(sf_out.tti_rx).to_uint(), -1)) { dl_allocs.fill(0, dl_allocs.size()); } } // Decode Data allocations, check collisions and fill cumulative mask for (uint32_t i = 0; i < dl_result.data.size(); ++i) { TESTASSERT(try_dl_mask_fill(dl_result.data[i].dci, "data") == SRSRAN_SUCCESS); } // TEST: check for holes in the PRB mask (RBGs not fully filled) rbgmask.resize(cell_params.nof_rbgs); rbgmask.reset(); srsran::bounded_bitset<100, true> rev_alloc = ~dl_allocs; for (uint32_t i = 0; i < cell_params.nof_rbgs; ++i) { uint32_t lim = SRSRAN_MIN((i + 1) * cell_params.P, dl_allocs.size()); bool val = dl_allocs.any(i * cell_params.P, lim); CONDERROR(rev_alloc.any(i * cell_params.P, lim) and val, "No holes can be left in an RBG"); if (val) { rbgmask.set(i); } } CONDERROR(expected_rbgmask != nullptr and *expected_rbgmask != rbgmask, "The derived DL RBG mask %s does not match the expected one %s", fmt::format("{}", rbgmask).c_str(), fmt::format("{}", *expected_rbgmask).c_str()); return SRSRAN_SUCCESS; } /** * - SIB1 is allocated in correct TTIs * - TB size is adequate for SIB allocation * - The SIBs with index>1 are allocated in expected TTI windows */ int test_sib_scheduling(const sf_output_res_t& sf_out, uint32_t enb_cc_idx) { const auto& cell_params = sf_out.cc_params[enb_cc_idx]; const auto& dl_result = sf_out.dl_cc_result[enb_cc_idx]; uint32_t sfn = to_tx_dl(sf_out.tti_rx).to_uint() / 10; uint32_t sf_idx = to_tx_dl(sf_out.tti_rx).to_uint() % 10; bool sib1_expected = ((sfn % 2) == 0) and sf_idx == 5; using bc_elem = const sched_interface::dl_sched_bc_t; bc_elem* bc_begin = dl_result.bc.begin(); bc_elem* bc_end = dl_result.bc.end(); /* Test if SIB1 was correctly scheduled */ auto it = std::find_if(bc_begin, bc_end, [](bc_elem& elem) { return elem.index == 0; }); CONDERROR(sib1_expected and it == bc_end, "Failed to allocate SIB1 in even sfn, sf_idx==5"); CONDERROR(not sib1_expected and it != bc_end, "SIB1 allocated in wrong TTI."); /* Test if any SIB was scheduled with wrong index, tbs, or outside of its window */ for (bc_elem* bc = bc_begin; bc != bc_end; ++bc) { if (bc->index == 0) { continue; } CONDERROR(bc->index >= sched_interface::MAX_SIBS, "Invalid SIB idx=%d", bc->index + 1); CONDERROR(bc->tbs < cell_params.cfg.sibs[bc->index].len, "Allocated BC process with TBS=%d < sib_len=%d", bc->tbs, cell_params.cfg.sibs[bc->index].len); CONDERROR(bc->dci.rnti != 0xffff, "Invalid rnti=0x%x for SIB%d", bc->dci.rnti, bc->index); CONDERROR(bc->dci.format != SRSRAN_DCI_FORMAT1A, "Invalid DCI format for SIB%d", bc->index); uint32_t x = (bc->index - 1) * cell_params.cfg.si_window_ms; uint32_t sf = x % 10; uint32_t sfn_start = sfn; while ((sfn_start % cell_params.cfg.sibs[bc->index].period_rf) != x / 10) { sfn_start--; } srsran::tti_point win_start{sfn_start * 10 + sf}; srsran::tti_interval window{win_start, win_start + cell_params.cfg.si_window_ms}; CONDERROR(not window.contains(to_tx_dl(sf_out.tti_rx)), "Scheduled SIB is outside of its SIB window"); } return SRSRAN_SUCCESS; } int test_pdcch_collisions(const sf_output_res_t& sf_out, uint32_t enb_cc_idx, const srsran::bounded_bitset<128, true>* expected_cce_mask) { const auto& cell_params = sf_out.cc_params[enb_cc_idx]; const auto& dl_result = sf_out.dl_cc_result[enb_cc_idx]; const auto& ul_result = sf_out.ul_cc_result[enb_cc_idx]; int ret = srsran_regs_pdcch_ncce(cell_params.regs.get(), dl_result.cfi); TESTASSERT(ret > 0); uint32_t ncce = ret; srsran::bounded_bitset<128, true> used_cce{ncce}; // Helper Function: checks if there is any collision. If not, fills the PDCCH mask auto try_cce_fill = [&](const srsran_dci_location_t& dci_loc, const char* ch) { uint32_t cce_start = dci_loc.ncce, cce_stop = dci_loc.ncce + (1u << dci_loc.L); CONDERROR(dci_loc.L > 3, "The aggregation level %d is not valid", dci_loc.L); CONDERROR( cce_start >= ncce or cce_stop > ncce, "The CCE positions (%u, %u) do not fit in PDCCH", cce_start, cce_stop); CONDERROR( used_cce.any(cce_start, cce_stop), "%s DCI collision between CCE positions (%u, %u)", ch, cce_start, cce_stop); used_cce.fill(cce_start, cce_stop); return SRSRAN_SUCCESS; }; /* TEST: verify there are no dci collisions for UL, DL data, BC, RAR */ for (uint32_t i = 0; i < ul_result.pusch.size(); ++i) { const auto& pusch = ul_result.pusch[i]; if (not pusch.needs_pdcch) { // In case of non-adaptive retx or Msg3 continue; } try_cce_fill(pusch.dci.location, "UL"); } for (uint32_t i = 0; i < dl_result.data.size(); ++i) { try_cce_fill(dl_result.data[i].dci.location, "DL data"); } for (uint32_t i = 0; i < dl_result.bc.size(); ++i) { try_cce_fill(dl_result.bc[i].dci.location, "DL BC"); } for (uint32_t i = 0; i < dl_result.rar.size(); ++i) { try_cce_fill(dl_result.rar[i].dci.location, "DL RAR"); } CONDERROR(expected_cce_mask != nullptr and *expected_cce_mask != used_cce, "The derived PDCCH mask %s does not match the expected one %s", fmt::format("{}", used_cce).c_str(), fmt::format("{}", *expected_cce_mask).c_str()); return SRSRAN_SUCCESS; } int test_dci_content_common(const sf_output_res_t& sf_out, uint32_t enb_cc_idx) { const auto& cell_params = sf_out.cc_params[enb_cc_idx]; const auto& dl_result = sf_out.dl_cc_result[enb_cc_idx]; const auto& ul_result = sf_out.ul_cc_result[enb_cc_idx]; std::set alloc_rntis; for (uint32_t i = 0; i < ul_result.pusch.size(); ++i) { const auto& pusch = ul_result.pusch[i]; uint16_t rnti = pusch.dci.rnti; CONDERROR(pusch.tbs == 0, "Allocated PUSCH with invalid TBS=%d", pusch.tbs); CONDERROR(alloc_rntis.count(rnti) > 0, "The user rnti=0x%x got allocated multiple times in UL", rnti); alloc_rntis.insert(pusch.dci.rnti); CONDERROR(not(((pusch.current_tx_nb % 4) == 0) xor (pusch.dci.tb.rv != 0)), "[rnti=0x%x] Number of txs incorrectly set", rnti); if (not pusch.needs_pdcch) { // In case of non-adaptive retx or Msg3 continue; } if (pusch.dci.tb.rv == 0) { // newTx CONDERROR(pusch.dci.format != SRSRAN_DCI_FORMAT0, "Incorrect UL DCI format"); CONDERROR(pusch.dci.tb.mcs_idx > 28, "Incorrect UL MCS index"); } } alloc_rntis.clear(); for (uint32_t i = 0; i < dl_result.data.size(); ++i) { auto& data = dl_result.data[i]; uint16_t rnti = data.dci.rnti; CONDERROR(data.tbs[0] == 0 and data.tbs[1] == 0, "Allocated DL data has empty TBS"); CONDERROR(alloc_rntis.count(rnti) > 0, "The user rnti=0x%x got allocated multiple times in DL", rnti); alloc_rntis.insert(data.dci.rnti); for (uint32_t tb = 0; tb < 2; ++tb) { if (data.tbs[tb] == 0) { continue; } if (data.dci.tb[tb].rv == 0) { // newTx CONDERROR(data.nof_pdu_elems[tb] == 0, "Allocated DL grant does not have MAC SDUs"); CONDERROR(data.nof_pdu_elems[tb] > sched_interface::MAX_RLC_PDU_LIST, "Number of SDUs in DL grant exceeds limit"); uint32_t alloc_bytes = 0; for (uint32_t pdu = 0; pdu < data.nof_pdu_elems[tb]; ++pdu) { alloc_bytes += data.pdu[tb][pdu].nbytes; } CONDERROR(alloc_bytes > data.tbs[tb], "The bytes allocated to individual MAC SDUs is larger than total TBS"); CONDERROR(data.dci.tb[tb].mcs_idx > 28, "Incorrect DL MCS index"); } } } // TEST: max coderate is not exceeded for RA and Broadcast srsran_dl_sf_cfg_t dl_sf = {}; dl_sf.cfi = sf_out.dl_cc_result[enb_cc_idx].cfi; dl_sf.tti = to_tx_dl(sf_out.tti_rx).to_uint(); auto test_ra_bc_coderate = [&dl_sf, &cell_params](uint32_t tbs, const srsran_dci_dl_t& dci) { srsran_pdsch_grant_t grant = {}; srsran_ra_dl_grant_to_grant_prb_allocation(&dci, &grant, cell_params.cfg.cell.nof_prb); uint32_t nof_re = srsran_ra_dl_grant_nof_re(&cell_params.cfg.cell, &dl_sf, &grant); float coderate = srsran_coderate(tbs * 8, nof_re); const uint32_t Qm = 2; CONDERROR( coderate > 0.932f * Qm, "Max coderate was exceeded from %s DCI", dci.rnti == SRSRAN_SIRNTI ? "SIB" : "RAR"); return SRSRAN_SUCCESS; }; for (uint32_t i = 0; i < dl_result.bc.size(); ++i) { const sched_interface::dl_sched_bc_t& bc = dl_result.bc[i]; if (bc.type == sched_interface::dl_sched_bc_t::BCCH) { CONDERROR(bc.tbs < cell_params.cfg.sibs[bc.index].len, "Allocated BC process with TBS=%d < sib_len=%d", bc.tbs, cell_params.cfg.sibs[bc.index].len); } else if (bc.type == sched_interface::dl_sched_bc_t::PCCH) { CONDERROR(bc.tbs == 0, "Allocated paging process with invalid TBS=%d", bc.tbs); } else { TESTERROR("Invalid broadcast process id=%d", (int)bc.type); } TESTASSERT(test_ra_bc_coderate(bc.tbs, bc.dci) == SRSRAN_SUCCESS); } for (uint32_t i = 0; i < dl_result.rar.size(); ++i) { const auto& rar = dl_result.rar[i]; CONDERROR(rar.tbs == 0, "Allocated RAR process with invalid TBS=%d", rar.tbs); // TEST: max coderate is not exceeded TESTASSERT(test_ra_bc_coderate(rar.tbs, rar.dci) == SRSRAN_SUCCESS); } return SRSRAN_SUCCESS; } int test_all_common(const sf_output_res_t& sf_out) { for (uint32_t i = 0; i < sf_out.cc_params.size(); ++i) { TESTASSERT(test_pusch_collisions(sf_out, i, nullptr) == SRSRAN_SUCCESS); TESTASSERT(test_pdsch_collisions(sf_out, i, nullptr) == SRSRAN_SUCCESS); TESTASSERT(test_sib_scheduling(sf_out, i) == SRSRAN_SUCCESS); TESTASSERT(test_pdcch_collisions(sf_out, i, nullptr) == SRSRAN_SUCCESS); TESTASSERT(test_dci_content_common(sf_out, i) == SRSRAN_SUCCESS); } return SRSRAN_SUCCESS; } } // namespace srsenb