/** * * \section COPYRIGHT * * Copyright 2013-2021 Software Radio Systems Limited * * By using this file, you agree to the terms and conditions set * forth in the LICENSE file which can be found at the top level of * the distribution. * */ #ifndef SRSRAN_MEM_POOL_H #define SRSRAN_MEM_POOL_H #include "srsran/common/thread_pool.h" #include #include #include #include namespace srsran { /// Stores provided mem blocks in a stack in an non-owning manner. Not thread-safe class memblock_stack { struct node { node* prev; explicit node(node* prev_) : prev(prev_) {} }; public: constexpr static size_t min_memblock_size() { return sizeof(node); } memblock_stack() = default; memblock_stack(const memblock_stack&) = delete; memblock_stack(memblock_stack&& other) noexcept : head(other.head) { other.head = nullptr; } memblock_stack& operator=(const memblock_stack&) = delete; memblock_stack& operator=(memblock_stack&& other) noexcept { head = other.head; other.head = nullptr; return *this; } void push(uint8_t* block) noexcept { // printf("head: %ld\n", (long)head); node* next = ::new (block) node(head); head = next; count++; } uint8_t* try_pop() noexcept { if (is_empty()) { return nullptr; } node* last_head = head; head = head->prev; count--; return (uint8_t*)last_head; } bool is_empty() const { return head == nullptr; } size_t size() const { return count; } void clear() { head = nullptr; } private: node* head = nullptr; size_t count = 0; }; /// memblock stack that mutexes pushing/popping class mutexed_memblock_stack { public: mutexed_memblock_stack() = default; mutexed_memblock_stack(const mutexed_memblock_stack&) = delete; mutexed_memblock_stack(mutexed_memblock_stack&& other) noexcept { std::unique_lock lk1(other.mutex, std::defer_lock); std::unique_lock lk2(mutex, std::defer_lock); std::lock(lk1, lk2); stack = std::move(other.stack); } mutexed_memblock_stack& operator=(const mutexed_memblock_stack&) = delete; mutexed_memblock_stack& operator=(mutexed_memblock_stack&& other) noexcept { std::unique_lock lk1(other.mutex, std::defer_lock); std::unique_lock lk2(mutex, std::defer_lock); std::lock(lk1, lk2); stack = std::move(other.stack); return *this; } void push(uint8_t* block) noexcept { std::lock_guard lock(mutex); stack.push(block); } uint8_t* try_pop() noexcept { std::lock_guard lock(mutex); uint8_t* block = stack.try_pop(); return block; } bool is_empty() const noexcept { return stack.is_empty(); } size_t size() const noexcept { std::lock_guard lock(mutex); return stack.size(); } void clear() { std::lock_guard lock(mutex); stack.clear(); } private: memblock_stack stack; mutable std::mutex mutex; }; /** * Pool specialized for big objects. Created objects are not contiguous in memory. * Relevant methods: * - ::allocate_node(sz) - allocate memory of sizeof(T), or reuse memory already present in cache * - ::deallocate_node(void* p) - return memory addressed by p back to the pool to be cached. * - ::reserve(N) - prereserve memory slots for faster object creation * @tparam ObjSize object memory size * @tparam ThreadSafe if object pool is thread-safe or not */ template class big_obj_pool { // memory stack type derivation (thread safe or not) using stack_type = typename std::conditional::type; // memory stack to cache allocate memory chunks stack_type stack; public: ~big_obj_pool() { clear(); } /// alloc new object space. If no memory is pre-reserved in the pool, malloc is called. void* allocate_node(size_t sz) { assert(sz == sizeof(T)); static const size_t blocksize = std::max(sizeof(T), memblock_stack::min_memblock_size()); uint8_t* block = stack.try_pop(); if (block == nullptr) { block = new uint8_t[blocksize]; } return block; } void deallocate_node(void* p) { if (p != nullptr) { stack.push(static_cast(p)); } } /// Pre-reserve N memory chunks for future object allocations void reserve(size_t N) { static const size_t blocksize = std::max(sizeof(T), memblock_stack::min_memblock_size()); for (size_t i = 0; i < N; ++i) { stack.push(new uint8_t[blocksize]); } } size_t capacity() const { return stack.size(); } void clear() { uint8_t* block = stack.try_pop(); while (block != nullptr) { delete[] block; block = stack.try_pop(); } } }; /** * Pool specialized for in allocating batches of objects in a preemptive way in a background thread to minimize latency. * Note: Current implementation assumes that the pool object will outlive the background callbacks to allocate new * batches * @tparam T individual object type that is being allocated * @tparam BatchSize number of T objects in a batch * @tparam ThresholdSize number of T objects below which a new batch needs to be allocated */ template class background_allocator_obj_pool { static_assert(ThresholdSize > 0, "ThresholdSize needs to be positive"); static_assert(BatchSize > 1, "BatchSize needs to be higher than 1"); public: background_allocator_obj_pool(bool lazy_start = false) { if (not lazy_start) { allocate_batch_in_background(); } } background_allocator_obj_pool(background_allocator_obj_pool&&) = delete; background_allocator_obj_pool(const background_allocator_obj_pool&) = delete; background_allocator_obj_pool& operator=(background_allocator_obj_pool&&) = delete; background_allocator_obj_pool& operator=(const background_allocator_obj_pool&) = delete; ~background_allocator_obj_pool() { std::lock_guard lock(mutex); batches.clear(); } /// alloc new object space. If no memory is pre-reserved in the pool, malloc is called to allocate new batch. void* allocate_node(size_t sz) { assert(sz == sizeof(T)); std::lock_guard lock(mutex); uint8_t* block = obj_cache.try_pop(); if (block != nullptr) { // allocation successful if (obj_cache.size() < ThresholdSize) { get_background_workers().push_task([this]() { std::lock_guard lock(mutex); allocate_batch_(); }); } return block; } // try allocation of new batch in same thread as caller. allocate_batch_(); return obj_cache.try_pop(); } void deallocate_node(void* p) { std::lock_guard lock(mutex); assert(p != nullptr); if (p != nullptr) { obj_cache.push(static_cast(p)); } } void allocate_batch_in_background() { get_background_workers().push_task([this]() { std::lock_guard lock(mutex); allocate_batch_(); }); } private: using obj_storage_t = typename std::aligned_storage::type; using batch_obj_t = std::array; /// Unprotected allocation of new Batch of Objects void allocate_batch_() { batches.emplace_back(new batch_obj_t()); batch_obj_t& batch = *batches.back(); for (obj_storage_t& obj_store : batch) { obj_cache.push(reinterpret_cast(&obj_store)); } } // memory stack to cache allocate memory chunks std::mutex mutex; memblock_stack obj_cache; std::vector > batches; }; } // namespace srsran #endif // SRSRAN_MEM_POOL_H