srsLTE/srsenb/test/mac/scheduler_test_rand.cc

505 lines
21 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srsenb/hdr/stack/mac/scheduler.h"
#include "srsenb/hdr/stack/mac/scheduler_carrier.h"
#include "srsenb/hdr/stack/mac/scheduler_ue.h"
#include <algorithm>
#include <chrono>
#include <random>
#include <set>
#include <srslte/srslte.h>
#include <unistd.h>
#include "srsenb/hdr/phy/phy.h"
#include "srsenb/hdr/stack/mac/mac.h"
#include "srslte/common/log_filter.h"
#include "srslte/interfaces/enb_interfaces.h"
#include "srslte/interfaces/sched_interface.h"
#include "srslte/phy/utils/debug.h"
#include "scheduler_test_common.h"
#include "scheduler_test_utils.h"
#include "srslte/common/test_common.h"
/********************************************************
* Random Tester for Scheduler.
* Current Checks:
* - Check correct timing of PRACH, RAR, and Msg3
* - Check whether Msg4 contains ConRes
* - Check allocs of users that no longer exist
* - Check collisions in PDCCH, PUSCH, and PDSCH
* - Unexpected Msg3, RAR allocs or with wrong values
* - Users without data to Tx cannot be allocated in UL
* - Retxs always take precedence
* - Invalid BC SIB index or TBS
* - Harqs:
* - invalid pids scheduled
* - empty harqs scheduled
* - invalid harq TTI
* - consistent NCCE loc
* - invalid retx number
* - DL adaptive retx/new tx <=> PDCCH alloc
*******************************************************/
uint32_t const seed = std::chrono::system_clock::now().time_since_epoch().count();
// uint32_t const seed = 2452071795;
// uint32_t const seed = 1581009287; // prb==25
bool check_old_pids = false;
struct ue_stats_t {
uint64_t nof_dl_rbs = 0;
uint64_t nof_ul_rbs = 0;
};
std::map<uint16_t, ue_stats_t> ue_stats;
/*******************
* Logging *
*******************/
class sched_test_log final : public srslte::test_log_filter
{
public:
sched_test_log() : srslte::test_log_filter("TEST") { exit_on_error = true; }
~sched_test_log() override { log_diagnostics(); }
void log_diagnostics() override
{
info("UE stats:\n");
for (auto& e : ue_stats) {
info("0x%x: {DL RBs: %" PRIu64 ", UL RBs: %" PRIu64 "}\n", e.first, e.second.nof_dl_rbs, e.second.nof_ul_rbs);
}
info("Number of assertion warnings: %u\n", warn_counter);
info("Number of assertion errors: %u\n", error_counter);
info("This was the seed: %u\n", seed);
}
};
srslte::scoped_log<sched_test_log> log_global{};
/*******************
* Dummies *
*******************/
constexpr uint32_t CARRIER_IDX = 0;
// Designed for testing purposes
struct sched_tester : public srsenb::common_sched_tester {
struct tester_user_results {
uint32_t dl_pending_data = 0;
uint32_t ul_pending_data = 0; ///< data pending for UL
bool has_dl_tx = false;
bool has_ul_tx = false; ///< has either tx or retx
bool has_ul_retx = false;
bool has_ul_newtx = false; ///< *no* retx, but has tx
bool ul_retx_got_delayed = false;
srsenb::dl_harq_proc dl_harqs[srsenb::sched_ue_carrier::SCHED_MAX_HARQ_PROC];
srsenb::ul_harq_proc ul_harq;
};
struct sched_tti_data {
std::map<uint16_t, tester_user_results> ue_data; ///< stores buffer state of each user
tester_user_results total_ues; ///< stores combined UL/DL buffer state
};
// sched results
sched_tti_data tti_data;
void rem_user(uint16_t rnti) override;
int test_pdcch_collisions();
int assert_no_empty_allocs();
int test_sch_collisions();
int test_harqs();
private:
void new_test_tti() override;
void before_sched() override;
int process_results() override;
};
void sched_tester::rem_user(uint16_t rnti)
{
common_sched_tester::rem_user(rnti);
tti_data.ue_data.erase(rnti);
}
void sched_tester::new_test_tti()
{
common_sched_tester::new_test_tti();
// NOTE: make a local copy, since some of these variables may be cleared during scheduling
tti_data.ue_data.clear();
tti_data.total_ues = tester_user_results();
}
void sched_tester::before_sched()
{
// check pending data buffers
for (auto& it : ue_db) {
uint16_t rnti = it.first;
srsenb::sched_ue* user = &it.second;
tester_user_results d;
srsenb::ul_harq_proc* hul = user->get_ul_harq(tti_info.tti_params.tti_tx_ul, CARRIER_IDX);
d.ul_pending_data = get_ul_buffer(rnti);
// user->get_pending_ul_new_data(tti_info.tti_params.tti_tx_ul) or hul->has_pending_retx(); //
// get_ul_buffer(rnti);
d.dl_pending_data = get_dl_buffer(rnti);
d.has_ul_retx = hul->has_pending_retx();
d.has_ul_tx = d.has_ul_retx or d.ul_pending_data > 0;
srsenb::dl_harq_proc* hdl = user->get_pending_dl_harq(tti_info.tti_params.tti_tx_dl, CARRIER_IDX);
d.has_dl_tx =
(hdl != nullptr) or
(it.second.get_empty_dl_harq(tti_info.tti_params.tti_tx_dl, CARRIER_IDX) != nullptr and d.dl_pending_data > 0);
d.has_ul_newtx = not d.has_ul_retx and d.ul_pending_data > 0;
tti_data.ue_data.insert(std::make_pair(rnti, d));
tti_data.total_ues.dl_pending_data += d.dl_pending_data;
tti_data.total_ues.ul_pending_data += d.ul_pending_data;
tti_data.total_ues.has_ul_tx |= d.has_ul_tx;
tti_data.total_ues.has_dl_tx |= d.has_dl_tx;
tti_data.total_ues.has_ul_newtx |= d.has_ul_newtx;
for (uint32_t i = 0; i < srsenb::sched_ue_carrier::SCHED_MAX_HARQ_PROC; ++i) {
const srsenb::dl_harq_proc& h = user->get_dl_harq(i, CARRIER_IDX);
tti_data.ue_data[rnti].dl_harqs[i] = h;
}
// NOTE: ACK might have just cleared the harq for tti_info.tti_params.tti_tx_ul
tti_data.ue_data[rnti].ul_harq = *user->get_ul_harq(tti_info.tti_params.tti_tx_ul, CARRIER_IDX);
}
// TODO: Check whether pending pending_rar.rar_tti correspond to a prach_tti
}
int sched_tester::process_results()
{
const auto& sf_result = carrier_schedulers[CARRIER_IDX]->get_sf_result(tti_info.tti_params.tti_rx);
TESTASSERT(tti_info.tti_params.tti_rx == sf_result.tti_params.tti_rx);
test_pdcch_collisions();
TESTASSERT(ue_tester->test_all(0, tti_info.dl_sched_result[CARRIER_IDX], tti_info.ul_sched_result[CARRIER_IDX]) ==
SRSLTE_SUCCESS);
test_sch_collisions();
assert_no_empty_allocs();
test_harqs();
output_tester[CARRIER_IDX].test_sib_scheduling(tti_info.tti_params, tti_info.dl_sched_result[CARRIER_IDX]);
return SRSLTE_SUCCESS;
}
int sched_tester::assert_no_empty_allocs()
{
// Test if allocations only take place for users with pending data or in RAR
for (auto& iter : tti_data.ue_data) {
uint16_t rnti = iter.first;
// srsenb::sched_ue* user = &ue_db[rnti];
if (not iter.second.has_ul_tx) {
for (uint32_t i = 0; i < tti_info.ul_sched_result[CARRIER_IDX].nof_dci_elems; ++i) {
auto& pusch = tti_info.ul_sched_result[CARRIER_IDX].pusch[i];
if (pusch.dci.rnti == rnti and pusch.needs_pdcch) {
// TODO: This test does not work for adaptive re-tx
TESTERROR("There was a user without data that got allocated in UL\n");
}
}
}
// srsenb::ul_harq_proc* hul = user->get_ul_harq(tti_info.tti_params.tti_tx_ul);
iter.second.ul_retx_got_delayed = iter.second.has_ul_retx and iter.second.ul_harq.is_empty(0);
tti_data.total_ues.ul_retx_got_delayed |= iter.second.ul_retx_got_delayed;
// Retxs cannot give space to newtx allocations
CONDERROR(tti_data.total_ues.ul_retx_got_delayed, "There was a retx that was erased for user rnti=0x%x\n", rnti);
}
// There must be allocations if there is pending data/retxs.
// bool no_dl_allocs = true;
// for (auto& it : tti_data.ue_data) {
// if (it.second.dl_sched != nullptr) {
// no_dl_allocs = false;
// }
// }
// CONDERROR(tti_data.total_ues.has_dl_tx and no_dl_allocs, "There was pending DL data but no user got allocated\n");
// TODO: You have to verify if there is space for the retx since it is non-adaptive
return SRSLTE_SUCCESS;
}
/**
* Tests whether there were collisions in the DCI allocations
*/
int sched_tester::test_pdcch_collisions()
{
srslte::bounded_bitset<128, true> used_cce;
used_cce.resize(srslte_regs_pdcch_ncce(sched_cell_params[CARRIER_IDX].regs.get(), sched_cfg.nof_ctrl_symbols));
/* TEST: Check if there are collisions in the PDCCH */
TESTASSERT(output_tester[CARRIER_IDX].test_pdcch_collisions(tti_info.dl_sched_result[CARRIER_IDX],
tti_info.ul_sched_result[CARRIER_IDX],
&used_cce) == SRSLTE_SUCCESS);
/* TEST: Check whether dci values are correct */
TESTASSERT(output_tester[CARRIER_IDX].test_dci_values_consistency(
tti_info.dl_sched_result[CARRIER_IDX], tti_info.ul_sched_result[CARRIER_IDX]) == SRSLTE_SUCCESS);
/* verify if sched_result "used_cce" coincide with sched "used_cce" */
const auto& sf_result = carrier_schedulers[CARRIER_IDX]->get_sf_result(tti_info.tti_params.tti_rx);
if (used_cce != sf_result.pdcch_mask) {
std::string mask_str = sf_result.pdcch_mask.to_string();
TESTERROR("The used_cce do not match: (%s!=%s)\n", mask_str.c_str(), used_cce.to_string().c_str());
}
// TODO: Check postponed retxs
// typedef std::map<uint16_t, srsenb::sched_ue>::iterator it_t;
// // There must be allocations if there is pending data/retxs.
// if(total_ues.has_ul_tx and ul_sched_result.empty()) {
// for (it_t it = ue_db.begin(); it != ue_db.end(); ++it) {
// uint32_t aggr_level = it->second.get_aggr_level(srslte_dci_format_sizeof(SRSLTE_DCI_FORMAT0, cfg.cell.nof_prb,
// cfg.cell.nof_ports)); if (find_empty_dci(it->second.get_locations(current_cfi, sf_idx), aggr_level) > 0) {
// TESTERROR("[%d] There was pending UL data and free CCEs, but no user got allocated\n",
// tti_info.tti_params.tti_rx);
// }
// }
// }
return SRSLTE_SUCCESS;
}
int sched_tester::test_harqs()
{
/* check consistency of DL harq procedures and allocations */
for (uint32_t i = 0; i < tti_info.dl_sched_result[CARRIER_IDX].nof_data_elems; ++i) {
const auto& data = tti_info.dl_sched_result[CARRIER_IDX].data[i];
uint32_t h_id = data.dci.pid;
uint16_t rnti = data.dci.rnti;
const srsenb::dl_harq_proc& h = ue_db[rnti].get_dl_harq(h_id, CARRIER_IDX);
CONDERROR(h.is_empty(), "Cannot schedule an empty harq proc\n");
CONDERROR(h.get_tti() != tti_info.tti_params.tti_tx_dl,
"The scheduled DL harq pid=%d does not a valid tti=%u\n",
h_id,
tti_info.tti_params.tti_tx_dl);
CONDERROR(h.get_n_cce() != data.dci.location.ncce, "Harq DCI location does not match with result\n");
if (tti_data.ue_data[rnti].dl_harqs[h_id].has_pending_retx(0, tti_info.tti_params.tti_tx_dl)) { // retx
CONDERROR(tti_data.ue_data[rnti].dl_harqs[h_id].nof_retx(0) + 1 != h.nof_retx(0),
"A dl harq of user rnti=0x%x was likely overwritten.\n",
rnti);
CONDERROR(h.nof_retx(0) >= sim_args0.ue_cfg.maxharq_tx,
"The number of retx=%d exceeded its max=%d\n",
h.nof_retx(0),
sim_args0.ue_cfg.maxharq_tx);
} else { // newtx
CONDERROR(h.nof_retx(0) != 0, "A new harq was scheduled but with invalid number of retxs\n");
}
}
for (uint32_t i = 0; i < tti_info.ul_sched_result[CARRIER_IDX].nof_dci_elems; ++i) {
const auto& pusch = tti_info.ul_sched_result[CARRIER_IDX].pusch[i];
uint16_t rnti = pusch.dci.rnti;
const auto& ue_data = tti_data.ue_data[rnti];
const srsenb::ul_harq_proc* h = ue_db[rnti].get_ul_harq(tti_info.tti_params.tti_tx_ul, CARRIER_IDX);
CONDERROR(h == nullptr or h->is_empty(), "scheduled UL harq does not exist or is empty\n");
CONDERROR(h->get_tti() != tti_info.tti_params.tti_tx_ul,
"The scheduled UL harq does not a valid tti=%u\n",
tti_info.tti_params.tti_tx_ul);
CONDERROR(h->has_pending_ack(), "At the end of the TTI, there shouldnt be any pending ACKs\n");
if (h->has_pending_retx()) {
// retx
CONDERROR(ue_data.ul_harq.is_empty(0), "reTx in an UL harq that was empty\n");
CONDERROR(h->nof_retx(0) != ue_data.ul_harq.nof_retx(0) + 1,
"A retx UL harq was scheduled but with invalid number of retxs\n");
CONDERROR(h->is_adaptive_retx() and not pusch.needs_pdcch, "Adaptive retxs need PDCCH alloc\n");
} else {
CONDERROR(h->nof_retx(0) != 0, "A new harq was scheduled but with invalid number of retxs\n");
CONDERROR(not ue_data.ul_harq.is_empty(0), "UL new tx in a UL harq that was not empty\n");
}
}
/* Check PHICH allocations */
for (uint32_t i = 0; i < tti_info.ul_sched_result[CARRIER_IDX].nof_phich_elems; ++i) {
const auto& phich = tti_info.ul_sched_result[CARRIER_IDX].phich[i];
CONDERROR(tti_data.ue_data.count(phich.rnti) == 0, "Allocated PHICH rnti no longer exists\n");
const auto& hprev = tti_data.ue_data[phich.rnti].ul_harq;
const auto* h = ue_db[phich.rnti].get_ul_harq(tti_info.tti_params.tti_tx_ul, CARRIER_IDX);
CONDERROR(not hprev.has_pending_ack(), "Alloc PHICH did not have any pending ack\n");
bool maxretx_flag = hprev.nof_retx(0) + 1 >= hprev.max_nof_retx();
if (phich.phich == sched_interface::ul_sched_phich_t::ACK) {
CONDERROR(!hprev.is_empty(), "ack phich for UL harq that is not empty\n");
} else {
CONDERROR(h->get_pending_data() == 0 and !maxretx_flag, "NACKed harq has no pending data\n");
}
}
for (const auto& ue : ue_db) {
const auto& hprev = tti_data.ue_data[ue.first].ul_harq;
if (not hprev.has_pending_ack()) {
continue;
}
uint32_t i = 0;
for (; i < tti_info.ul_sched_result[CARRIER_IDX].nof_phich_elems; ++i) {
const auto& phich = tti_info.ul_sched_result[CARRIER_IDX].phich[i];
if (phich.rnti == ue.first) {
break;
}
}
CONDERROR(i == tti_info.ul_sched_result[CARRIER_IDX].nof_phich_elems,
"harq had pending ack but no phich was allocked\n");
}
// Check whether some pids got old
if (check_old_pids) {
for (auto& user : ue_db) {
for (int i = 0; i < srsenb::sched_ue_carrier::SCHED_MAX_HARQ_PROC; i++) {
if (not user.second.get_dl_harq(i, CARRIER_IDX).is_empty(0)) {
if (srslte_tti_interval(tti_info.tti_params.tti_tx_dl, user.second.get_dl_harq(i, CARRIER_IDX).get_tti()) >
49) {
TESTERROR(
"The pid=%d for rnti=0x%x got old.\n", user.second.get_dl_harq(i, CARRIER_IDX).get_id(), user.first);
}
}
}
}
}
return SRSLTE_SUCCESS;
}
int sched_tester::test_sch_collisions()
{
const auto& sf_result = carrier_schedulers[CARRIER_IDX]->get_sf_result(tti_info.tti_params.tti_rx);
srsenb::prbmask_t ul_allocs(sched_cell_params[CARRIER_IDX].cfg.cell.nof_prb);
/* TEST: any collision in PUCCH and PUSCH */
TESTASSERT(output_tester[CARRIER_IDX].test_pusch_collisions(
tti_info.tti_params, tti_info.ul_sched_result[CARRIER_IDX], ul_allocs) == SRSLTE_SUCCESS);
/* TEST: check whether cumulative UL PRB masks coincide */
if (ul_allocs != sf_result.ul_mask) {
TESTERROR("The UL PRB mask and the scheduler result UL mask are not consistent\n");
}
// update ue stats with number of allocated UL PRBs
for (uint32_t i = 0; i < tti_info.ul_sched_result[CARRIER_IDX].nof_dci_elems; ++i) {
uint32_t L, RBstart;
srslte_ra_type2_from_riv(tti_info.ul_sched_result[CARRIER_IDX].pusch[i].dci.type2_alloc.riv,
&L,
&RBstart,
sched_cell_params[CARRIER_IDX].cfg.cell.nof_prb,
sched_cell_params[CARRIER_IDX].cfg.cell.nof_prb);
ue_stats[tti_info.ul_sched_result[CARRIER_IDX].pusch[i].dci.rnti].nof_ul_rbs += L;
}
/* TEST: check any collision in PDSCH */
srsenb::rbgmask_t rbgmask(sched_cell_params[CARRIER_IDX].cfg.cell.nof_prb);
TESTASSERT(output_tester[CARRIER_IDX].test_pdsch_collisions(
tti_info.tti_params, tti_info.dl_sched_result[CARRIER_IDX], rbgmask) == SRSLTE_SUCCESS);
// update ue stats with number of DL RB allocations
srslte::bounded_bitset<100, true> alloc_mask(sched_cell_params[CARRIER_IDX].cfg.cell.nof_prb);
for (uint32_t i = 0; i < tti_info.dl_sched_result[CARRIER_IDX].nof_data_elems; ++i) {
TESTASSERT(srsenb::extract_dl_prbmask(sched_cell_params[CARRIER_IDX].cfg.cell,
tti_info.dl_sched_result[CARRIER_IDX].data[i].dci,
&alloc_mask) == SRSLTE_SUCCESS);
ue_stats[tti_info.dl_sched_result[CARRIER_IDX].data[i].dci.rnti].nof_dl_rbs += alloc_mask.count();
}
// TEST: check if resulting DL mask is equal to scheduler internal DL mask
if (rbgmask != sf_result.dl_mask) {
TESTERROR("The DL PRB mask and the scheduler result DL mask are not consistent (%s!=%s)\n",
rbgmask.to_string().c_str(),
sf_result.dl_mask.to_string().c_str());
}
return SRSLTE_SUCCESS;
}
void test_scheduler_rand(sched_sim_events sim)
{
// Create classes
sched_tester tester;
srsenb::sched my_sched;
tester.init(nullptr);
tester.sim_cfg(std::move(sim.sim_args));
tester.test_next_ttis(sim.tti_events);
}
sched_sim_events rand_sim_params(uint32_t nof_ttis)
{
sched_sim_events sim_gen;
uint32_t max_conn_dur = 10000, min_conn_dur = 500;
float P_ul_sr = srsenb::randf() * 0.5, P_dl = srsenb::randf() * 0.5;
float P_prach = 0.99f; // 0.1f + randf()*0.3f;
float ul_sr_exps[] = {1, 4}; // log rand
float dl_data_exps[] = {1, 4}; // log rand
uint32_t max_nof_users = 5;
std::uniform_int_distribution<> connection_dur_dist(min_conn_dur, max_conn_dur);
std::uniform_int_distribution<uint32_t> dist_prb_idx(0, 5);
uint32_t prb_idx = dist_prb_idx(srsenb::get_rand_gen());
uint32_t nof_prb = std::array<uint32_t, 6>({6, 15, 25, 50, 75, 100})[prb_idx];
sched_sim_event_generator generator;
sim_gen.sim_args.cell_cfg = {generate_default_cell_cfg(nof_prb)};
sim_gen.sim_args.ue_cfg = generate_default_ue_cfg();
sim_gen.sim_args.P_retx = 0.1;
sim_gen.sim_args.start_tti = 0;
sim_gen.sim_args.sim_log = log_global.get();
generator.tti_events.resize(nof_ttis);
for (uint32_t tti = 0; tti < nof_ttis; ++tti) {
for (auto& u : generator.current_users) {
uint32_t rnti = u.first;
if (srsenb::randf() < P_ul_sr) {
float exp = ul_sr_exps[0] + srsenb::randf() * (ul_sr_exps[1] - ul_sr_exps[0]);
generator.add_ul_data(rnti, (uint32_t)pow(10, exp));
}
if (srsenb::randf() < P_dl) {
float exp = dl_data_exps[0] + srsenb::randf() * (dl_data_exps[1] - dl_data_exps[0]);
generator.add_dl_data(rnti, (uint32_t)pow(10, exp));
}
}
// may add new user (For now, we only support one UE per PRACH)
bool is_prach_tti =
srslte_prach_tti_opportunity_config_fdd(sim_gen.sim_args.cell_cfg[CARRIER_IDX].prach_config, tti, -1);
if (is_prach_tti and generator.current_users.size() < max_nof_users and srsenb::randf() < P_prach) {
generator.add_new_default_user(connection_dur_dist(srsenb::get_rand_gen()));
}
generator.step_tti();
}
sim_gen.tti_events = std::move(generator.tti_events);
return sim_gen;
}
int main()
{
// Setup seed
srsenb::set_randseed(seed);
printf("This is the chosen seed: %u\n", seed);
srslte::logmap::set_default_log_level(srslte::LOG_LEVEL_INFO);
uint32_t N_runs = 1, nof_ttis = 10240 + 10;
for (uint32_t n = 0; n < N_runs; ++n) {
printf("Sim run number: %u\n", n + 1);
sched_sim_events sim = rand_sim_params(nof_ttis);
test_scheduler_rand(std::move(sim));
}
return 0;
}