srsLTE/srsue/test/mac_test.cc

935 lines
28 KiB
C++

/*
* Copyright 2013-2019 Software Radio Systems Limited
*
* This file is part of srsLTE.
*
* srsLTE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsLTE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "srslte/common/log_filter.h"
#include "srslte/common/mac_pcap.h"
#include "srslte/interfaces/ue_interfaces.h"
#include "srsue/hdr/stack/mac/mac.h"
#include "srsue/hdr/stack/mac/mux.h"
#include <assert.h>
#include <iostream>
#include <string.h>
using namespace srsue;
using namespace srslte;
#define HAVE_PCAP 0
static std::unique_ptr<srslte::mac_pcap> pcap_handle = nullptr;
#define TESTASSERT(cond) \
{ \
if (!(cond)) { \
std::cout << "[" << __FUNCTION__ << "][Line " << __LINE__ << "]: FAIL at " << (#cond) << std::endl; \
return SRSLTE_ERROR; \
} \
}
namespace srslte {
// fake classes
class rlc_dummy : public srsue::rlc_interface_mac
{
public:
rlc_dummy(srslte::log_filter* log_) : received_bytes(0), log(log_) {}
bool has_data(const uint32_t lcid) { return ul_queues[lcid] > 0; }
uint32_t get_buffer_state(const uint32_t lcid) { return ul_queues[lcid]; }
int read_pdu(uint32_t lcid, uint8_t* payload, uint32_t nof_bytes)
{
uint32_t len = SRSLTE_MIN(ul_queues[lcid], nof_bytes);
// set payload bytes to LCID so we can check later if the scheduling was correct
memset(payload, lcid, len);
// remove from UL queue
ul_queues[lcid] -= len;
return len;
};
void write_pdu(uint32_t lcid, uint8_t* payload, uint32_t nof_bytes)
{
log->debug_hex(payload, nof_bytes, "Received %d B on LCID %d\n", nof_bytes, lcid);
received_bytes += nof_bytes;
};
void write_sdu(uint32_t lcid, uint32_t nof_bytes) { ul_queues[lcid] += nof_bytes; }
void write_pdu_bcch_bch(uint8_t* payload, uint32_t nof_bytes){};
void write_pdu_bcch_dlsch(uint8_t* payload, uint32_t nof_bytes){};
void write_pdu_pcch(uint8_t* payload, uint32_t nof_bytes){};
void write_pdu_mch(uint32_t lcid, uint8_t* payload, uint32_t nof_bytes){};
uint32_t get_received_bytes() { return received_bytes; }
private:
uint32_t received_bytes;
srslte::log_filter* log;
// UL queues where key is LCID and value the queue length
std::map<uint32_t, uint32_t> ul_queues;
};
class phy_dummy : public phy_interface_mac_lte
{
public:
phy_dummy() : scell_cmd(0){};
// phy_interface_mac_lte
void configure_prach_params(){};
virtual void prach_send(uint32_t preamble_idx, int allowed_subframe, float target_power_dbm){};
prach_info_t prach_get_info()
{
prach_info_t info = {};
return info;
};
void sr_send(){};
int sr_last_tx_tti() { return 0; };
void set_mch_period_stop(uint32_t stop){};
// phy_interface_mac_common
void set_crnti(uint16_t rnti){};
void set_timeadv_rar(uint32_t ta_cmd){};
void set_timeadv(uint32_t ta_cmd){};
void set_activation_deactivation_scell(uint32_t cmd) { scell_cmd = cmd; };
void set_rar_grant(uint8_t grant_payload[SRSLTE_RAR_GRANT_LEN], uint16_t rnti){};
uint32_t get_current_tti() { return 0; }
float get_phr() { return 0; };
float get_pathloss_db() { return 0; };
// getter for test execution
uint32_t get_scell_cmd() { return scell_cmd; }
private:
uint32_t scell_cmd;
};
class rrc_dummy : public rrc_interface_mac
{
public:
void ho_ra_completed(bool ra_successful) { printf("%s\n", __FUNCTION__); }
void release_pucch_srs() { printf("%s\n", __FUNCTION__); }
void run_tti(uint32_t tti) { printf("%s\n", __FUNCTION__); }
void ra_problem() { printf("%s\n", __FUNCTION__); }
};
} // namespace srslte
int mac_unpack_test()
{
// This MAC PDU contains three subheaders
const uint32_t mac_header_len = 4;
// Subheader 1 is SCell Activation/Deactivation CE
// - 1 byte SDU payload 0x02
const uint32_t mac_pdu1_len = 1;
// Subheader 2 is for LCID 1
// - 2 bytes SDU payload 0x00 0x08
const uint32_t mac_pdu2_len = 2;
// Subheader 3 is for LCID 3 (RLC AM PDU with 2 B header and 54 B data)
// - 56 bytes SDU payload 0x98 .. 0x89, 0x00, 0x00
const uint32_t mac_pdu3_len = 56;
uint8_t dl_sch_pdu[] = {0x3b, 0x21, 0x02, 0x03, 0x02, 0x00, 0x08, 0x98, 0x1b, 0x45, 0x00, 0x05, 0xda,
0xc7, 0x23, 0x40, 0x00, 0x40, 0x11, 0xe6, 0x9b, 0xc0, 0xa8, 0x03, 0x01, 0xc0,
0xa8, 0x03, 0x02, 0xd8, 0x29, 0x13, 0x89, 0x05, 0xc6, 0x2b, 0x73, 0x00, 0x0d,
0xc3, 0xb3, 0x5c, 0xa3, 0x23, 0xad, 0x00, 0x03, 0x20, 0x1b, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x13, 0x89, 0x00, 0x00};
srslte::log_filter rlc_log("RLC");
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac;
mac.init(&phy, &rlc, &rrc, &mac_log);
// create dummy DL action and grant and push MAC PDU
mac_interface_phy_lte::tb_action_dl_t dl_action;
mac_interface_phy_lte::mac_grant_dl_t mac_grant;
bzero(&dl_action, sizeof(dl_action));
bzero(&mac_grant, sizeof(mac_grant));
mac_grant.rnti = 0xbeaf;
mac_grant.tb[0].tbs = sizeof(dl_sch_pdu);
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_dl(cc_idx, mac_grant, &dl_action);
// Copy PDU into provided buffer
bool dl_ack[SRSLTE_MAX_CODEWORDS] = {true, false};
memcpy(dl_action.tb[0].payload, dl_sch_pdu, sizeof(dl_sch_pdu));
dl_action.tb[0].enabled = true;
mac.tb_decoded(cc_idx, mac_grant, dl_ack);
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(0);
mac.stop();
// check length of both received RLC PDUs
TESTASSERT(rlc.get_received_bytes() == mac_pdu2_len + mac_pdu3_len);
// check received SCell activation command
TESTASSERT(phy.get_scell_cmd() == 2);
return SRSLTE_SUCCESS;
}
// Basic test with a single padding byte and a 10B SCH SDU
int mac_ul_sch_pdu_test1()
{
const uint8_t tv[] = {0x3f, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01};
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
srslte::log_filter rlc_log("RLC");
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac;
mac.init(&phy, &rlc, &rrc, &mac_log);
const uint16_t crnti = 0x1001;
mac.set_ho_rnti(crnti, 0);
// write dummy data
rlc.write_sdu(1, 10);
// create UL action and grant and push MAC PDU
{
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t mac_grant = {};
mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant
mac_grant.tb.ndi_present = true;
mac_grant.tb.ndi = true;
mac_grant.tb.tbs = 12; // give room for MAC subheader, SDU and one padding byte
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_ul(cc_idx, mac_grant, &ul_action);
// print generated PDU
mac_log.info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1);
#endif
TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0);
}
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(0);
mac.stop();
return SRSLTE_SUCCESS;
}
// Basic logical channel prioritization test with 3 SCH SDUs
int mac_ul_logical_channel_prioritization_test1()
{
// PDU layout (21 B in total)
// - 2 B MAC subheader for SCH LCID=1
// - 2 B MAC subheader for SCH LCID=2
// - 1 B MAC subheader for SCH LCID=3
// - 10 B MAC SDU for LCID=1
// - 4 B MAC SDU for LCID=2
// - 2 B MAC SDU for LCID=3
const uint8_t tv[] = {0x21, 0x0a, 0x22, 0x04, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03};
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
srslte::log_filter rlc_log("RLC");
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac;
mac.init(&phy, &rlc, &rrc, &mac_log);
const uint16_t crnti = 0x1001;
mac.set_ho_rnti(crnti, 0);
// generate configs for three LCIDs with different priority and PBR
std::vector<logical_channel_config_t> lcids;
logical_channel_config_t config = {};
config.lcid = 1;
config.lcg = 1;
config.PBR = 10;
config.BSD = 1000; // 1000ms
config.priority = 1; // highest prio
lcids.push_back(config);
config.lcid = 2;
config.lcg = 1;
config.PBR = 4;
config.priority = 2;
lcids.push_back(config);
config.lcid = 3;
config.lcg = 1;
config.PBR = 2;
config.priority = 3;
lcids.push_back(config);
// setup LCIDs in MAC
for (auto& channel : lcids) {
mac.setup_lcid(channel.lcid, channel.lcg, channel.priority, channel.PBR, channel.BSD);
}
// run TTI to setup Bj, no UL data available yet, so no BSR should be triggered
mac.run_tti(0);
usleep(200);
// write dummy data for each LCID (except CCCH)
rlc.write_sdu(1, 50);
rlc.write_sdu(2, 40);
rlc.write_sdu(3, 20);
// create UL action and grant and push MAC PDU
{
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t mac_grant = {};
mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant
mac_grant.tb.ndi_present = true;
mac_grant.tb.ndi = true;
mac_grant.tb.tbs = 21; // each LCID has more data to transmit than is available
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_ul(cc_idx, mac_grant, &ul_action);
// print generated PDU
mac_log.info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1);
#endif
TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0);
}
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(0);
mac.stop();
return SRSLTE_SUCCESS;
}
// Similar test like above but with a much larger UL grant, we expect that each LCID is fully served
int mac_ul_logical_channel_prioritization_test2()
{
// PDU layout (120 B in total)
// - 1 B MAC subheader for Short BSR
// - 2 B MAC subheader for SCH LCID=1
// - 2 B MAC subheader for SCH LCID=2
// - 2 B MAC subheader for SCH LCID=3
// - 1 B MAC subheader for Padding
//
// - 1 B Short BSR
// - 50 B MAC SDU for LCID=1
// - 40 B MAC SDU for LCID=2
// - 20 B MAC SDU for LCID=3
// - 1 B Padding
// =120 N
const uint8_t tv[] = {0x3d, 0x21, 0x32, 0x22, 0x28, 0x23, 0x14, 0x1f, 0x51, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x02,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03,
0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x00};
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
srslte::log_filter rlc_log("RLC");
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac;
mac.init(&phy, &rlc, &rrc, &mac_log);
const uint16_t crnti = 0x1001;
mac.set_ho_rnti(crnti, 0);
// generate configs for three LCIDs with different priority and PBR
std::vector<logical_channel_config_t> lcids;
logical_channel_config_t config = {};
config.lcid = 1;
config.lcg = 1;
config.PBR = 10;
config.BSD = 1000; // 1000ms
config.priority = 1; // highest prio
lcids.push_back(config);
config.lcid = 2;
config.lcg = 1;
config.PBR = 4;
config.priority = 2;
lcids.push_back(config);
config.lcid = 3;
config.lcg = 1;
config.PBR = 2;
config.priority = 3;
lcids.push_back(config);
// setup LCIDs in MAC
for (auto& channel : lcids) {
mac.setup_lcid(channel.lcid, channel.lcg, channel.priority, channel.PBR, channel.BSD);
}
// write dummy data for each LCID (except CCCH)
rlc.write_sdu(1, 50);
rlc.write_sdu(2, 40);
rlc.write_sdu(3, 20);
// run TTI to setup Bj, BSR should be generated
mac.run_tti(0);
usleep(100);
// create UL action and grant and push MAC PDU
{
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t mac_grant = {};
mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant
mac_grant.tb.ndi_present = true;
mac_grant.tb.ndi = true;
mac_grant.tb.tbs = 120; // each LCID has more data to transmit than is available
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_ul(cc_idx, mac_grant, &ul_action);
// print generated PDU
mac_log.info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1);
#endif
TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0);
}
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(0);
mac.stop();
return SRSLTE_SUCCESS;
}
// Basic logical channel prioritization test with 2 SCH SDUs
// Using default setting for dedicated bearer
int mac_ul_logical_channel_prioritization_test3()
{
// PDU layout (21 B in total)
// - 2 B MAC subheader for SCH LCID=4
// - 1 B MAC subheader for SCH LCID=3
// - 10 B MAC SDU for LCID=4
// - 8 B MAC SDU for LCID=3
const uint8_t tv[] = {0x24, 0x0a, 0x03, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03};
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
srslte::log_filter rlc_log("RLC");
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac;
mac.init(&phy, &rlc, &rrc, &mac_log);
const uint16_t crnti = 0x1001;
mac.set_ho_rnti(crnti, 0);
// generate configs for two LCIDs with different priority and PBR
std::vector<logical_channel_config_t> lcids;
logical_channel_config_t config = {};
// The config of DRB1
config.lcid = 3;
config.lcg = 3;
config.PBR = 8; // 8 kByte/s
config.BSD = 100; // 100ms
config.priority = 15;
lcids.push_back(config);
// DRB2
config.lcid = 4;
config.lcg = 1;
config.PBR = 0; // no PBR
config.priority = 7; // higher prio
lcids.push_back(config);
// setup LCIDs in MAC
for (auto& channel : lcids) {
mac.setup_lcid(channel.lcid, channel.lcg, channel.priority, channel.PBR, channel.BSD);
}
// run TTI to setup Bj
mac.run_tti(0);
sleep(1);
// write dummy data for each LCID
rlc.write_sdu(3, 50);
rlc.write_sdu(4, 50);
// create UL action and grant and push MAC PDU
{
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t mac_grant = {};
mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant
mac_grant.tb.ndi_present = true;
mac_grant.tb.ndi = true;
mac_grant.tb.tbs = 21; // each LCID has more data to transmit than is available
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_ul(cc_idx, mac_grant, &ul_action);
// print generated PDU
mac_log.info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1);
#endif
TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0);
}
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(0);
mac.stop();
return SRSLTE_SUCCESS;
}
// PDU with single SDU and short BSR
int mac_ul_sch_pdu_with_short_bsr_test()
{
const uint8_t tv[] = {0x3f, 0x3d, 0x01, 0x02, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01};
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
srslte::log_filter rlc_log("RLC");
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac;
mac.init(&phy, &rlc, &rrc, &mac_log);
const uint16_t crnti = 0x1001;
mac.set_ho_rnti(crnti, 0);
// generate configs for two LCIDs with different priority and PBR
std::vector<logical_channel_config_t> lcids;
logical_channel_config_t config = {};
// The config of DRB1
config.lcid = 3;
config.lcg = 3;
config.PBR = 8;
config.BSD = 100; // 100ms
config.priority = 15;
lcids.push_back(config);
// DRB2
config.lcid = 4;
config.lcg = 1;
config.PBR = 0;
config.priority = 7;
lcids.push_back(config);
// setup LCIDs in MAC
for (auto& channel : lcids) {
mac.setup_lcid(channel.lcid, channel.lcg, channel.priority, channel.PBR, channel.BSD);
}
// write dummy data
rlc.write_sdu(1, 10);
// generate TTI
uint32 tti = 0;
mac.run_tti(tti++);
usleep(100);
// create UL action and grant and push MAC PDU
{
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t mac_grant = {};
mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant
mac_grant.tb.ndi_present = true;
mac_grant.tb.ndi = true;
mac_grant.tb.tbs = 14; // give room for MAC subheader, SDU and short BSR
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_ul(cc_idx, mac_grant, &ul_action);
// print generated PDU
mac_log.info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1);
#endif
TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0);
}
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(tti);
mac.stop();
return SRSLTE_SUCCESS;
}
// PDU with only padding BSR (long BSR) and the rest padding
int mac_ul_sch_pdu_with_padding_bsr_test()
{
const uint8_t tv[] = {0x3e, 0x1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
srslte::log_filter rlc_log("RLC");
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac;
mac.init(&phy, &rlc, &rrc, &mac_log);
const uint16_t crnti = 0x1001;
mac.set_ho_rnti(crnti, 0);
// create UL action and grant and push MAC PDU
{
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t mac_grant = {};
mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant
mac_grant.tb.ndi_present = true;
mac_grant.tb.ndi = true;
mac_grant.tb.tbs = 10; // give enough room for Padding BSR
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_ul(cc_idx, mac_grant, &ul_action);
// print generated PDU
mac_log.info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1);
#endif
TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0);
}
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(0);
mac.stop();
return SRSLTE_SUCCESS;
}
// Single byte MAC PDU
int mac_ul_sch_pdu_one_byte_test()
{
const uint8_t tv[] = {0x1f};
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
srslte::log_filter rlc_log("RLC");
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac;
mac.init(&phy, &rlc, &rrc, &mac_log);
const uint16_t crnti = 0x1001;
mac.set_ho_rnti(crnti, 0);
// write dummy data
rlc.write_sdu(0, 10);
// create UL action and grant and push MAC PDU
{
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t mac_grant = {};
mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant
mac_grant.tb.ndi_present = true;
mac_grant.tb.ndi = true;
mac_grant.tb.tbs = 1;
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_ul(cc_idx, mac_grant, &ul_action);
// print generated PDU
mac_log.info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1);
#endif
TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0);
}
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(0);
mac.stop();
return SRSLTE_SUCCESS;
}
// Two byte MAC PDU
int mac_ul_sch_pdu_two_byte_test()
{
const uint8_t tv[] = {0x01, 0x01};
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
srslte::log_filter rlc_log("RLC");
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac;
mac.init(&phy, &rlc, &rrc, &mac_log);
const uint16_t crnti = 0x1001;
mac.set_ho_rnti(crnti, 0);
// write dummy data
rlc.write_sdu(1, 10);
// create UL action and grant and push MAC PDU
{
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t mac_grant = {};
mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant
mac_grant.tb.ndi_present = true;
mac_grant.tb.ndi = true;
mac_grant.tb.tbs = 2;
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_ul(cc_idx, mac_grant, &ul_action);
// print generated PDU
mac_log.info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1);
#endif
TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0);
}
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(0);
mac.stop();
return SRSLTE_SUCCESS;
}
// Three byte MAC PDU (Single byte padding, SDU header, 1 B SDU)
int mac_ul_sch_pdu_three_byte_test()
{
const uint8_t tv[] = {0x3f, 0x01, 0x01};
srslte::log_filter mac_log("MAC");
mac_log.set_level(srslte::LOG_LEVEL_DEBUG);
mac_log.set_hex_limit(100000);
srslte::log_filter rlc_log("RLC");
rlc_log.set_level(srslte::LOG_LEVEL_DEBUG);
rlc_log.set_hex_limit(100000);
// dummy layers
phy_dummy phy;
rlc_dummy rlc(&rlc_log);
rrc_dummy rrc;
// the actual MAC
mac mac;
mac.init(&phy, &rlc, &rrc, &mac_log);
const uint16_t crnti = 0x1001;
mac.set_ho_rnti(crnti, 0);
// write dummy data
rlc.write_sdu(1, 1);
// create UL action and grant and push MAC PDU
{
mac_interface_phy_lte::tb_action_ul_t ul_action = {};
mac_interface_phy_lte::mac_grant_ul_t mac_grant = {};
mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant
mac_grant.tb.ndi_present = true;
mac_grant.tb.ndi = true;
mac_grant.tb.tbs = 3;
int cc_idx = 0;
// Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC
mac.new_grant_ul(cc_idx, mac_grant, &ul_action);
// print generated PDU
mac_log.info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs);
#if HAVE_PCAP
pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1);
#endif
TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0);
}
// make sure MAC PDU thread picks up before stopping
sleep(1);
mac.run_tti(0);
mac.stop();
return SRSLTE_SUCCESS;
}
int main(int argc, char** argv)
{
#if HAVE_PCAP
pcap_handle = std::unique_ptr<srslte::mac_pcap>(new srslte::mac_pcap());
pcap_handle->open("mac_test.pcap");
#endif
if (mac_unpack_test()) {
printf("MAC PDU unpack test failed.\n");
return -1;
}
if (mac_ul_sch_pdu_test1()) {
printf("mac_ul_sch_pdu_test1() test failed.\n");
return -1;
}
if (mac_ul_logical_channel_prioritization_test1()) {
printf("mac_ul_logical_channel_prioritization_test1() test failed.\n");
return -1;
}
if (mac_ul_logical_channel_prioritization_test2()) {
printf("mac_ul_logical_channel_prioritization_test2() test failed.\n");
return -1;
}
if (mac_ul_logical_channel_prioritization_test3()) {
printf("mac_ul_logical_channel_prioritization_test3() test failed.\n");
return -1;
}
if (mac_ul_sch_pdu_with_short_bsr_test()) {
printf("mac_ul_sch_pdu_with_long_bsr_test() test failed.\n");
return -1;
}
if (mac_ul_sch_pdu_with_padding_bsr_test()) {
printf("mac_ul_sch_pdu_with_padding_bsr_test() test failed.\n");
return -1;
}
if (mac_ul_sch_pdu_one_byte_test()) {
printf("mac_ul_sch_pdu_one_byte_test() test failed.\n");
return -1;
}
if (mac_ul_sch_pdu_two_byte_test()) {
printf("mac_ul_sch_pdu_two_byte_test() test failed.\n");
return -1;
}
if (mac_ul_sch_pdu_three_byte_test()) {
printf("mac_ul_sch_pdu_three_byte_test() test failed.\n");
return -1;
}
return 0;
}