srsLTE/lib/test/rlc/rlc_stress_test.cc

403 lines
12 KiB
C++

/**
* Copyright 2013-2021 Software Radio Systems Limited
*
* This file is part of srsRAN.
*
* srsRAN is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* srsRAN is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* A copy of the GNU Affero General Public License can be found in
* the LICENSE file in the top-level directory of this distribution
* and at http://www.gnu.org/licenses/.
*
*/
#include "rlc_stress_test.h"
#include "srsran/common/block_queue.h"
#include "srsran/common/crash_handler.h"
#include "srsran/common/rlc_pcap.h"
#include "srsran/common/test_common.h"
#include "srsran/common/threads.h"
#include "srsran/common/tsan_options.h"
#include "srsran/rlc/rlc.h"
#include <boost/program_options.hpp>
#include <boost/program_options/parsers.hpp>
#include <cassert>
#include <cstdlib>
#include <iostream>
#include <pthread.h>
#include <random>
#include "srsran/common/mac_pcap.h"
#include "srsran/mac/mac_sch_pdu_nr.h"
static std::unique_ptr<srsran::mac_pcap> pcap_handle = nullptr;
/***********************
* MAC tester class
***********************/
void mac_dummy::run_thread()
{
srsran::move_task_t task;
while (run_enable) {
// Downlink direction first (RLC1->RLC2)
run_tti(rlc1, rlc2, true);
// UL direction (RLC2->RLC1)
run_tti(rlc2, rlc1, false);
// step timer
timers->step_all();
if (pending_tasks.try_pop(&task)) {
task();
}
}
if (pending_tasks.try_pop(&task)) {
task();
}
}
void mac_dummy::run_tti(srsue::rlc_interface_mac* tx_rlc, srsue::rlc_interface_mac* rx_rlc, bool is_dl)
{
std::vector<srsran::unique_byte_buffer_t> pdu_list;
// Run Tx
run_tx_tti(tx_rlc, rx_rlc, pdu_list);
// Reverse PDUs
std::reverse(pdu_list.begin(), pdu_list.end());
// Run Rx
run_rx_tti(tx_rlc, rx_rlc, is_dl, pdu_list);
}
void mac_dummy::run_tx_tti(srsue::rlc_interface_mac* tx_rlc,
srsue::rlc_interface_mac* rx_rlc,
std::vector<srsran::unique_byte_buffer_t>& pdu_list)
{
// Generate A number of MAC PDUs
for (uint32_t i = 0; i < args.nof_pdu_tti; i++) {
// Create PDU unique buffer
srsran::unique_byte_buffer_t pdu = srsran::make_byte_buffer();
if (!pdu) {
printf("Fatal Error: Could not allocate PDU in %s\n", __FUNCTION__);
exit(-1);
}
// Get MAC PDU size
float factor = 1.0f;
if (args.random_opp) {
factor = 0.5f + real_dist(mt19937);
}
int opp_size = static_cast<int>(args.avg_opp_size * factor);
// Request data to transmit
uint32_t buf_state = tx_rlc->get_buffer_state(lcid);
if (buf_state > 0) {
pdu->N_bytes = tx_rlc->read_pdu(lcid, pdu->msg, opp_size);
// Push PDU in the list
pdu_list.push_back(std::move(pdu));
}
}
}
void mac_dummy::run_rx_tti(srsue::rlc_interface_mac* tx_rlc,
srsue::rlc_interface_mac* rx_rlc,
bool is_dl,
std::vector<srsran::unique_byte_buffer_t>& pdu_list)
{
// Sleep if necessary
if (args.pdu_tx_delay_usec > 0) {
std::this_thread::sleep_for(std::chrono::microseconds(args.pdu_tx_delay_usec));
}
auto it = pdu_list.begin(); // PDU iterator
bool skip_action = false; // Avoid discarding a duplicated or duplicating a discarded
while (it != pdu_list.end()) {
// Get PDU unique buffer
srsran::unique_byte_buffer_t& pdu = *it;
// Drop
float rnd = real_dist(mt19937);
if (std::isnan(rnd) || (((rnd > args.pdu_drop_rate) || skip_action) && pdu->N_bytes > 0)) {
uint32_t pdu_len = pdu->N_bytes;
// Cut
if ((real_dist(mt19937) < args.pdu_cut_rate)) {
int cut_pdu_len = static_cast<int>(pdu_len * real_dist(mt19937));
logger.info("Cutting MAC PDU len (%d B -> %d B)", pdu_len, cut_pdu_len);
pdu_len = cut_pdu_len;
}
// Write PDU in RX
rx_rlc->write_pdu(lcid, pdu->msg, pdu_len);
// Write PCAP
write_pdu_to_pcap(pcap_handle, is_dl, 4, pdu->msg, pdu_len); // Only handles NR rat
if (is_dl) {
pcap->write_dl_ccch(pdu->msg, pdu_len);
} else {
pcap->write_ul_ccch(pdu->msg, pdu_len);
}
} else {
logger.info(pdu->msg, pdu->N_bytes, "Dropping RLC PDU (%d B)", pdu->N_bytes);
skip_action = true; // Avoid drop duplicating this PDU
}
// Duplicate
if (real_dist(mt19937) > args.pdu_duplicate_rate || skip_action) {
it++;
skip_action = false; // Allow action on the next PDU
} else {
logger.info(pdu->msg, pdu->N_bytes, "Duplicating RLC PDU (%d B)", pdu->N_bytes);
skip_action = true; // Avoid drop of this PDU
}
}
}
/***********************
* RLC tester class
***********************/
// PDCP interface
void rlc_tester::write_pdu(uint32_t rx_lcid, srsran::unique_byte_buffer_t sdu)
{
assert(rx_lcid == lcid);
if (args.mode != "AM") {
// Only AM will guarantee to deliver SDUs, take first byte as reference for other modes
next_expected_sdu = sdu->msg[0];
}
// check SDU content (consider faster alternative)
for (uint32_t i = 0; i < sdu->N_bytes; ++i) {
if (sdu->msg[i] != next_expected_sdu) {
logger.error(sdu->msg,
sdu->N_bytes,
"Received malformed SDU with size %d, expected data 0x%X",
sdu->N_bytes,
next_expected_sdu);
fprintf(stderr, "Received malformed SDU with size %d, expected data 0x%X\n", sdu->N_bytes, next_expected_sdu);
fprintf(stdout, "Received malformed SDU with size %d, expected data 0x%X\n", sdu->N_bytes, next_expected_sdu);
std::this_thread::sleep_for(std::chrono::seconds(1)); // give some time to flush logs
exit(-1);
}
}
next_expected_sdu += 1;
rx_pdus++;
}
void rlc_tester::run_thread()
{
uint32_t pdcp_sn = 0;
uint32_t sdu_size = 0;
uint8_t payload = 0x0; // increment for each SDU
while (run_enable) {
// SDU queue is full, don't assign PDCP SN
if (rlc_pdcp->sdu_queue_is_full(lcid)) {
continue;
}
srsran::unique_byte_buffer_t pdu = srsran::make_byte_buffer();
if (pdu == nullptr) {
printf("Error: Could not allocate PDU in rlc_tester::run_thread\n\n\n");
// backoff for a bit
std::this_thread::sleep_for(std::chrono::milliseconds(10));
continue;
}
pdu->md.pdcp_sn = pdcp_sn;
// random or fixed SDU size
if (args.sdu_size < 1) {
sdu_size = int_dist(mt19937);
} else {
sdu_size = args.sdu_size;
}
for (uint32_t i = 0; i < sdu_size; i++) {
pdu->msg[i] = payload;
}
pdu->N_bytes = sdu_size;
payload++;
rlc_pdcp->write_sdu(lcid, std::move(pdu));
pdcp_sn = (pdcp_sn + 1) % max_pdcp_sn;
if (args.sdu_gen_delay_usec > 0) {
std::this_thread::sleep_for(std::chrono::microseconds(args.sdu_gen_delay_usec));
}
}
}
void stress_test(stress_test_args_t args)
{
auto log_sink =
(args.log_filename == "stdout") ? srslog::create_stdout_sink() : srslog::create_file_sink(args.log_filename);
if (!log_sink) {
return;
}
srslog::log_channel* chan = srslog::create_log_channel("main_channel", *log_sink);
if (!chan) {
return;
}
srslog::set_default_sink(*log_sink);
auto& log1 = srslog::fetch_basic_logger("RLC_1", false);
log1.set_level(static_cast<srslog::basic_levels>(args.log_level));
log1.set_hex_dump_max_size(args.log_hex_limit);
auto& log2 = srslog::fetch_basic_logger("RLC_2", false);
log2.set_level(static_cast<srslog::basic_levels>(args.log_level));
log2.set_hex_dump_max_size(args.log_hex_limit);
srsran::rlc_pcap pcap;
uint32_t lcid = 1;
srsran::rlc_config_t cnfg_ = {};
if (args.rat == "LTE") {
if (args.mode == "AM") {
// config RLC AM bearer
cnfg_ = srsran::rlc_config_t::default_rlc_am_config();
cnfg_.am.max_retx_thresh = args.max_retx;
} else if (args.mode == "UM") {
// config UM bearer
cnfg_ = srsran::rlc_config_t::default_rlc_um_config();
} else if (args.mode == "TM") {
// use default LCID in TM
lcid = 0;
} else {
std::cout << "Unsupported RLC mode " << args.mode << ", exiting." << std::endl;
exit(-1);
}
if (args.write_pcap) {
pcap.open("rlc_stress_test.pcap", cnfg_);
}
} else if (args.rat == "NR") {
if (args.mode == "UM6") {
cnfg_ = srsran::rlc_config_t::default_rlc_um_nr_config(6);
} else if (args.mode == "UM12") {
cnfg_ = srsran::rlc_config_t::default_rlc_um_nr_config(12);
} else if (args.mode == "AM12") {
cnfg_ = srsran::rlc_config_t::default_rlc_am_nr_config(12);
cnfg_.am_nr.max_retx_thresh = args.max_retx;
} else if (args.mode == "AM18") {
cnfg_ = srsran::rlc_config_t::default_rlc_am_nr_config(18);
cnfg_.am_nr.max_retx_thresh = args.max_retx;
} else {
std::cout << "Unsupported RLC mode " << args.mode << ", exiting." << std::endl;
exit(-1);
}
if (args.write_pcap) {
pcap_handle = std::unique_ptr<srsran::mac_pcap>(new srsran::mac_pcap());
pcap_handle->open("rlc_stress_test_nr.pcap");
}
} else {
std::cout << "Unsupported RAT mode " << args.rat << ", exiting." << std::endl;
exit(-1);
}
// generate random seed if needed
uint32_t seed = 0;
if (not args.zero_seed) {
std::random_device rd;
seed = rd();
}
if (args.seed != 0) {
seed = args.seed;
}
srsran::timer_handler timers(8);
srsran::rlc rlc1(log1.id().c_str());
srsran::rlc rlc2(log2.id().c_str());
rlc_tester tester1(&rlc1, "tester1", args, lcid, seed);
rlc_tester tester2(&rlc2, "tester2", args, lcid, seed);
mac_dummy mac(&rlc1, &rlc2, args, lcid, &timers, &pcap, seed);
rlc1.init(&tester1, &tester1, &timers, 0);
rlc2.init(&tester2, &tester2, &timers, 0);
// only add AM and UM bearers
if (args.mode != "TM") {
rlc1.add_bearer(lcid, cnfg_);
rlc2.add_bearer(lcid, cnfg_);
}
printf("Starting test ... Seed: %u\n", seed);
tester1.start(7);
if (!args.single_tx) {
tester2.start(7);
}
mac.start();
// wait until test is over
std::this_thread::sleep_for(std::chrono::seconds(args.test_duration_sec));
srslog::flush();
fflush(stdout);
printf("Test finished, tearing down ..\n");
// Stop RLC instances first to release blocking writers
mac.enqueue_task([&rlc1, &rlc2]() {
rlc1.stop();
rlc2.stop();
});
printf("RLC entities stopped.\n");
// Stop upper layer writers
tester1.stop();
tester2.stop();
printf("Writers stopped.\n");
mac.stop();
if (args.write_pcap) {
pcap.close();
}
srsran::rlc_metrics_t metrics = {};
rlc1.get_metrics(metrics, 1);
printf("RLC1 received %" PRIu64 " SDUs in %ds (%.2f/s), Tx=%" PRIu64 " B, Rx=%" PRIu64 " B\n",
tester1.get_nof_rx_pdus(),
args.test_duration_sec,
static_cast<double>(tester1.get_nof_rx_pdus() / args.test_duration_sec),
metrics.bearer[lcid].num_tx_pdu_bytes,
metrics.bearer[lcid].num_rx_pdu_bytes);
rlc_bearer_metrics_print(metrics.bearer[lcid]);
rlc2.get_metrics(metrics, 1);
printf("RLC2 received %" PRIu64 " SDUs in %ds (%.2f/s), Tx=%" PRIu64 " B, Rx=%" PRIu64 " B\n",
tester2.get_nof_rx_pdus(),
args.test_duration_sec,
static_cast<double>(tester2.get_nof_rx_pdus() / args.test_duration_sec),
metrics.bearer[lcid].num_tx_pdu_bytes,
metrics.bearer[lcid].num_rx_pdu_bytes);
rlc_bearer_metrics_print(metrics.bearer[lcid]);
}
int main(int argc, char** argv)
{
srsran_debug_handle_crash(argc, argv);
stress_test_args_t args = {};
parse_args(&args, argc, argv);
srslog::init();
stress_test(args);
exit(0);
}